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Smooth muscle is increasingly recognized as a key mechanical sculptor of

epithelia during embryonic development. Smooth muscle is a mesenchymal

tissue that surrounds the epithelia of organs including the gut, blood vessels,

lungs, bladder, ureter, uterus, oviduct and epididymis. Smooth muscle is

stiffer than its adjacent epithelium and often serves its morphogenetic func-

tion by physically constraining the growth of a proliferating epithelial layer.

This constraint leads to mechanical instabilities and epithelial morphogen-

esis through buckling. Smooth muscle stiffness alone, without smooth

muscle cell shortening, seems to be sufficient to drive epithelial morphogen-

esis. Fully understanding the development of organs that use smooth muscle

stiffness as a driver of morphogenesis requires investigating how smooth

muscle develops, a key aspect of which is distinguishing smooth muscle-

like tissues from one another in vivo and in culture. This necessitates a

comprehensive appreciation of the genetic, anatomical and functional

markers that are used to distinguish the different subtypes of smooth

muscle (for example, vascular versus visceral) from similar cell types

(including myofibroblasts and myoepithelial cells). Here, we review how

smooth muscle acts as a mechanical driver of morphogenesis and discuss

ways of identifying smooth muscle, which is critical for understanding

these morphogenetic events.

This article is part of the Theo Murphy meeting issue ‘Mechanics of

Development’.
1. Introduction
Smooth muscle is now recognized as a key contributor to the morphogenesis of

branched and folded organs. As a mesenchymal tissue, smooth muscle can par-

ticipate in reciprocal signalling with the epithelium to generate complex

patterns of epithelial folds [1]. Smooth muscle can also apply mechanical

forces to physically sculpt epithelia. By directly inducing epithelial folding

through mechanical instabilities, physical mechanisms using smooth muscle

can effect changes over longer length scales than morphogen diffusion and

may require simpler regulatory schemes than biochemical mechanisms that

rely on complex morphogen gradients. For example, starting from a uniform,

unbranched tube, a single buckling event can create branches throughout an

epithelium simply by homogeneously tuning the proliferation rate of the

entire epithelium relative to that of the adjacent smooth muscle [2]. Creating

this architecture through diffusion, however, would require multiple short-

range foci of high morphogen concentration to specify the location of each

branch through local changes in proliferation or cell shape [3].

The physical contributions of smooth muscle to tissue morphogenesis have

been investigated in the small intestine [4], oesophagus [5], lung [6], oviduct [7]

and epididymis [8] of developing organisms, through both experiments and

modelling. When smooth muscle is knocked out in the developing ureter [9]

or blood vessels [10], their epithelial or endothelial tubes become dilated or
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develop aneurysms, suggesting that smooth muscle also sup-

ports the physical structure of these organs as they develop.

Although smooth muscle is primarily known for its contrac-

tile properties, smooth muscle cell shortening does not seem

to be critical for its morphogenetic effects. Instead, compu-

tational models have suggested that epithelial folding can

be driven by a stiff, static smooth muscle layer surrounding

the growing epithelium [4,5,7,11]. Therefore, the feature of

smooth muscle most critical for directing epithelial morpho-

genesis appears to be its high mechanical stiffness relative

to the neighbouring epithelium.

In smooth muscle-induced physical mechanisms of

morphogenesis, there is a complex interplay of physical and

biochemical mechanisms, and understanding this interplay

is key to building a complete picture of the morphogenetic

events. Further investigating these phenomena will require a

combination of in vivo and cell and tissue culture assays to

understand how the differentiation of smooth muscle is

controlled. Since there are several smooth muscle-like tissues

[12,13], interpretation of these assays depends heavily on

understanding how to distinguish among these similar tissues.

Here, we review the definition of smooth muscle and its

key properties for physically directing epithelial morphogen-

esis. We then discuss organs in which smooth muscle is a

critical mechanical sculptor of tissue architecture. Finally,

because understanding the control of smooth muscle

differentiation in each of these tissues is the next step for

developing a complete model of how they are constructed,

we review markers and phenotypes used to distinguish

amongst various smooth muscle-like cells.
2. Definition and properties of smooth muscle
Smooth muscle is an involuntary contractile tissue found in

almost every part of the body, from the intestines to blood

vessels and hair follicles. Although it has been known that

the intestines can move independently since at least the time

of Galen in the second century [14], it was not until the six-

teenth century that Fallopius provided one of the earliest

descriptions of the muscle fibres responsible for this motion

by grossly dissecting them from the stomach [15]. Similar tis-

sues were still being discovered by gross dissection in the early

nineteenth century when Reisseisen found muscle fibres in the

lung [16,17]. There remained considerable debate, however,

about whether arteries contained a muscle sheath [18] until

the work of Henle and von Kölliker [19–21]. Henle, a histol-

ogist, recognized that the arteries were surrounded by a

layer of muscle tissue that lacked the striations found in volun-

tary muscles [20]. Von Kölliker isolated the spindle-shaped

muscle cells within the vasculature and those that formed

the involuntary muscles of other organs [19], thus demonstrat-

ing that these tissues comprise smooth muscle.

Today, smooth muscle is identified as tissue containing

a-smooth muscle actin (a-SMA)-expressing cells [22]. More

specific markers are used to distinguish between different

types of smooth muscle (vascular versus visceral) or similar

cell types (such as myofibroblasts and myoepithelial cells).

These markers include specific proteins, contractile function

[23] and histological features such as appearance and ana-

tomical location. The primary physiological function of

smooth muscle cells is involuntary contraction. Smooth

muscle tissues typically contain several cells, contraction of
which induces movements ranging from peristalsis of

digested food along the gut to piloerection of body hair.

Although all cell types are capable of some form of

actomyosin-based contractility, smooth muscle cells have a

specialized contractile apparatus (consisting of smooth

muscle-specific actin and myosin isoforms) that is usually

calcium-dependent but that is activated by a mechanism

different from that for skeletal muscle: calcium influx leads

to a signalling cascade that results in the phosphorylation

of myosin light chain, which activates cross-bridge cycling

of myosin heads on actin [24].

When smooth muscle cells contract, they can both shorten

and increase their stiffnesses [25,26] through actomyosin con-

tractility and through rearrangements of the cytoskeleton, for

example, by repolymerizing actin [27]. The stiffness of a

smooth muscle cell arises from its contractile network of

actin fibres and myosin, along with its intermediate filament

cytoskeleton of vimentin and desmin [28–31] (figure 1).

Atomic force microscopy (AFM) studies on relaxed, dissected

embryonic chicken gut sections have found that the muscular

layer has a lower stiffness than the epithelium [32,33], but

after contractile stimulation, individual smooth muscle cells

can become at least twice as stiff as epithelial cells, even

when muscle cells are prevented from physically shortening

[34,35]. These measurements likely underestimate the tissue-

scale stiffness of smooth muscle because individual cells,

tissue sections, and short length-scale AFM measurements

cannot account for the cellular and matrix organization of

native smooth muscle tissue. Unlike striated muscle, stretching

smooth muscle tissues do not decrease their ability to generate

force or enhance their stiffness. Because the contractile appar-

atus is made up of a fibre meshwork, myosin heads can

interact with nearby actin filaments no matter how stretched

the cell is; this structure contrasts with that of skeletal

muscle where the highly regular configurations of actin and

myosin cannot interact if the cell is stretched or compressed

too far [24]. The highly developed cytoskeletal network and

their ability to maintain stiffness over a variety of cell lengths

make smooth muscle cells especially well poised for directing

epithelial morphogenesis.

Another potentially useful property of smooth muscle for

driving morphogenesis is its geometric anisotropy: muscle

fibres tend to orient in one direction within a tissue.

Smooth muscle tissues shorten primarily in the direction of

their fibres, but whether they are, in fact, stiffer in that direc-

tion remains unclear. Studies of the stiffness of individual

smooth muscle cells and whole smooth muscle tissues in

different organisms have yielded conflicting results, with

some reporting that tissues are stiffer along the long axis of

the cells [36] and others reporting higher stiffness along the

short axis [37]; significant changes in stiffness anisotropy

occur after contraction [38,39]. This is even less well studied

in embryonic smooth muscle. Many smooth muscle-contain-

ing organs have multiple smooth muscle layers, often with

one circumferentially and one longitudinally oriented layer,

which may be particularly important in tissues where these

different layers differentiate at different times.

As more research has focused on the physical mechan-

isms of morphogenesis, it has become clear that these

properties make smooth muscle an effective tool for changing

the shapes of embryonic epithelial tissues. This is most

evident in the gastrointestinal tract, the lung, and both the

male and female reproductive systems.
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Figure 1. (a) The structure of a smooth muscle cell. The contractile apparatus of smooth muscle consists of a meshwork of actin and myosin fibres that undergo
cross-bridge cycling upon activation of the cell. This meshwork is interconnected with the cytoskeletal network including intermediate filaments, cell – matrix and
cell – cell adhesions. (b) Detailed view of these interconnections, focusing on structural proteins that are frequently used as markers of smooth muscle.
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3. Gastrointestinal system
(a) Intestine
In the adult chicken gut, the mucosa and its epithelium are

folded into thousands of projections known as villi that

increase the intestinal absorptive surface area [4]. The

mucosa is, in turn, surrounded by two major layers of

smooth muscle that contribute to digestive mobility: an

inner circular layer and an outer longitudinal layer [40–42].

There is also a thin layer of smooth muscle known as the

muscularis mucosa, which sits at the boundary of the

mucosa and the submucosa and has less clear functional

importance in the adult (figure 2a,b) [22]. This anatomy is

similar to that of the mammalian gut, but some observers

classify the chicken circular smooth muscle into distinct

inner and outer circular layers. Additionally, the chicken

submucosal connective tissue is much thinner than the

mammalian submucosa (and is absent in some parts of the

intestine), and the chicken small intestine does not have

the submucosal folds (plicae circulares) present in the

human gut [22,40,41].

In the white leghorn chicken embryo, the three muscle

layers form during a few days of development beginning

with the circular layer at embryonic day 8 (E8), followed by

the longitudinal layer at E13, and finally the muscularis

mucosa at E16. The appearance of each of these layers is

accompanied by changes in the morphology of the epi-

thelium and, after the final muscle layer appears, the

formation of villi (figure 2c) [4] (other timeframes for these
events have been reported for different chicken breeds [43]).

After each differentiation event, inhibiting the differentiation

of smooth muscle abolishes the change in epithelial mor-

phology. It is possible that this is a purely mechanical

interaction because dissecting the smooth muscle layer off

the gut epithelium removes the folds, and encasing the epi-

thelium in a silk tube can rescue the folded epithelial

phenotype. Consistent with this conclusion, finite element-

based computational modelling has shown that differences

in stiffness between the muscle layers and proliferating epi-

thelium are sufficient to drive epithelial folding into the

structures observed following smooth muscle differentiation

[4,44,45]. This process appears to depend mostly on the

static stiffness of the smooth muscle rather than its shortening

because reducing gut motility with sodium nitroprusside [46]

does not abrogate epithelial folding. Consistently, the compu-

tational model generates epithelial folds when the smooth

muscle is treated as a stiff, static tissue. However, although

the mechanical model eventually recapitulates the observed

geometry, it falls into several local energy minima on its

path to the final configuration. In vivo, the system may need to

be perturbed to avoid these local minima, and this function

could potentially be filled by smooth muscle contraction [4].

Notably, the model is executed in phases that apply a circumfer-

ential constraint and then a longitudinal constraint on the

epithelium to correspond to each muscle layer as it differentiates.

Smooth muscle is critical for the morphogenesis of the gut in

chicken and may contribute in other organisms [4]. In mice,

however, it seems to play, at most, a secondary role to cellular

http://rstb.royalsocietypublishing.org/
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Figure 2. (a) Three-dimensional structure of villi in the chick intestine. Grey plane indicates the location of the slice shown in (b). (b) Cross-section of the mature
chick gut tube showing the mucosa and villi and their relationship to the smooth muscle layers in the gut. The thin muscularis mucosa separates the lamina propria
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corresponding whole-mount microscopy images. Panel (c) is modified from [4]. Reprinted with permission from AAAS. muc, mucosa; sub muc., submucosa;
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migration under the influence of a pattern of morphogens

[47,48]. A recent review [49] of the comparative development

of intestinal villi in chicken versus mouse gives an illuminating

case study of how two similar tissues might be constructed

using different mechanisms (buckling morphogenesis versus

reaction–diffusion-controlled cell migration).
(b) Oesophagus
The structure of the mammalian oesophagus is similar to that

of the small intestine, except that the oesophagus has a much

thicker epithelial layer and no villi [22]. In the proximal

oesophagus, the muscle lining comprises skeletal muscle

that transitions to smooth muscle distally. The precise

location of this transition along the oesophagus varies by

species [50]. The mucosa in the human, bovine and porcine

oesophagus is folded longitudinally, in a geometric pattern

similar to the first step of gut folding in the chick [5,22,51].

Longitudinal folding is a common structural motif through-

out the body and several studies have investigated folding

in the oesophagus as a simple, accessible model for longitudinal

folding of biological tubes in general [11,52].

The oesophagus retains its longitudinal folds postmortem

and the folds disappear after dissecting the mucosa and

submucosa from the surrounding musculature [51]. Taken

together, these data suggest that mucosal folding is driven
by passive constriction of the soft mucosa and submucosa

by the surrounding muscle. Mechanical modelling has been

able to recapitulate the oesophageal folding pattern by consid-

ering the mucosa and submucosa as hyperelastic solids, with

an external pressure applied by the smooth muscle [51].

During development, however, the mucosa is likely proli-

ferating and growing. Other models have more closely

approximated the developmental case by modelling the

mucosa as a tube growing radially and circumferentially

that is bound by a static muscle layer, without constriction

from smooth muscle. In this case, the number of folds can be

computationally tuned by modifying the combined thickness

of the mucosal and submucosal layers in the model, and

the model correctly predicts the number of folds in the bovine

oesophagus when the mucosal and submucosal thicknesses

of the model are matched to their thicknesses in the bovine

oesophagus [5]. These investigations suggest that, during

development, constraining the proliferating mucosal epi-

thelium inside a stiff, static layer of smooth muscle is

sufficient to form longitudinal folds in the oesophageal mucosa.
4. Respiratory system
In the adult mouse lung, smooth muscle wraps the airway

epithelium, progressing from a thick layer around the bronchi

http://rstb.royalsocietypublishing.org/
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to thinner, sparser bundles around the small conducting air-

ways [53] (figure 3d,e ). During development, the trachea

buds off the gut tube at E9.5 and two bronchial buds soon

branch off of the developing trachea [54]. At this point,

each side of the embryonic lung comprises an epithelial

tube surrounded by mesenchyme. The epithelium forms the

architecture of the mature lung through repeated use of a

few branching motifs: domain branching, where one epi-

thelial tube buds off of the side of another, and terminal

bifurcation, where the end of an epithelial tube splits into

two new tubes [55]. Cells located within the mesenchyme

adjacent to the leading edge of the growing branch differen-

tiate into smooth muscle and begin to wrap around the tube

as it extends [56,57]. Therefore, smooth muscle appears to

differentiate along the branch, always lagging somewhat

behind the tip of the epithelium (figure 3a). At branches

that are about to bifurcate, the smooth muscle cells differen-

tiate ahead of the epithelial tip, causing it to flatten out and

eventually form a cleft [6]. Additional smooth muscle cells

differentiate and form a continuous layer that envelops the

cleft site and wraps around the original branch; as this

happens, the epithelium fully bifurcates into two daughter

branches (figure 3b,c). Inhibiting smooth muscle differen-

tiation either pharmacologically or genetically causes the

proliferating epithelium to buckle into complex, uncontrolled

geometries. Enhancing smooth muscle differentiation abro-

gates epithelial bifurcation as smooth muscle wraps fully

around the bud [6]. Interactions between the epithelium

and smooth muscle are likely largely mechanical because

dissecting the smooth muscle away from the bifurcating epi-

thelium causes the epithelium to revert to an unbifurcated

geometry. Inhibiting smooth muscle contraction with a

calcium channel blocker also inhibits smooth muscle differen-

tiation in this system, making it difficult to isolate the effects

of smooth muscle contraction from tissue stiffness [6]. This

fundamental role for airway smooth muscle in shaping the

lung is particularly revealing because this tissue has no

clear physiological function in the adult [58,59].

Some evidence suggests that smooth muscle can also affect

domain branching. When buds form in a region of the epi-

thelium that is already wrapped in smooth muscle, the

smooth muscle appears to reorganize to allow a new bud to
form in that location [56]. It remains unclear how smooth

muscle in this system affects branching; future work is

needed to determine if mechanics plays a role in this process.

Finally, the adult respiratory mucosa has longitudinal

folds similar to the adult oesophagus (figure 3e ). Studies of

oesophageal folding through smooth muscle-induced

instabilities have proposed that this mechanism may also

extend to airway folding [5,60].
5. Reproductive system
(a) Oviduct
The mouse oviduct (also known as the fallopian tube or uter-

ine tube) serves as a passageway from the ovary to the uterus

(figure 4a). It has deeper and more complex longitudinal

folds than the oesophagus [53], but experimental and compu-

tational evidence suggests that the longitudinal folds in both

organs arise through a common mechanism: mechanical

instabilities in a proliferating epithelium constrained by a

static sheath of smooth muscle [7]. The structure of the ovi-

duct is relatively simple: a folded epithelium and a thin

layer of mucosal connective tissue are directly surrounded

by a circular and a longitudinal smooth muscle layer

(figure 4b) [22]. These folds appear to be important for

proper transport of eggs and sperm along the oviduct

because the ciliated cells of the oviduct are primarily found

at fold peaks [61] and the loss of folds is associated with

human infertility [62].

The adult mouse oviduct changes its shape and folding

pattern during ovulation. Since the smooth muscle layer

does not fold along with the epithelium, the circumferential

length of the epithelium is greater than that of the smooth

muscle, suggesting that the epithelial folds form through a

buckling mechanism induced by the surrounding smooth

muscle [7]. Knocking out the planar cell polarity gene

Celsr1 leads to disordered alignment of epithelial cells,

disordered folding in the longitudinal direction and the

development of some circumferential folds. In these mutants,

the longitudinal length of the epithelium is greater than that

of the surrounding smooth muscle, while in wild-type mice

the length of the epithelium and smooth muscle are nearly
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equal. These results raised the possibility that the mor-

phology of the oviduct could arise from smooth muscle

constraining the epithelium in the circumferential and longi-

tudinal directions. A mathematical model treating the thin

epithelium as a grid of springs within a rigid cylinder of

smooth muscle was able to recapitulate the epithelial folding

pattern observed in wild-type oviducts. This model could

also recapitulate the folding pattern in Celsr1-knockout mice

by increasing the longitudinal length of the epithelium rela-

tive to its constraining cylinder. Adding support for this

mechanical viewpoint, laser ablation experiments confirmed

that the wild-type epithelium retracts more than the mutant

in the longitudinal direction, indicating that the mutant is

under lower longitudinal tension, as would be expected if

the complex folds of the knockout were due to longitudinal

compression of the epithelium [7]. This simple model can

further recapitulate diverse and complex folding patterns

by modifying the circumference and length of the epithelium

relative to its constraining cylinder [7]. The mechanical inves-

tigations in this system again consider the smooth muscle as a

stiff boundary constraint, making it unclear if contraction of

the muscle is necessary for oviduct folding.
(b) Epididymis
The epididymis is a muscular tube that transmits sperm from

the efferent ductules of the testis to the ductus deferens (or vas

deferens) [63]. It is composed of a layer of pseudostratified

epithelial cells closely surrounded by smooth muscle [22].

Unlike the gut and uterine tubes, there are no folds in the

lumen of the epididymis (figure 4d ); however, the tube itself

is highly convoluted, forming several loops and waves

(figure 4c) [8]. Still, this morphology seems to also result

from smooth muscle-mediated restriction of the growing
epithelium. In the mouse, the epididymis starts as a straight

tube at E15.5. The epididymis begins to fold into its tortuous

pattern, starting at the head, until the whole tube is twisted by

E18.5. During this same time period, smooth muscle differen-

tiates along the length of the epididymis [8]. Dissecting

the mesenchyme away from parts of the tortuous epithelium

causes epithelial uncoiling. Furthermore, removing the end of

the mesenchyme causes the epithelial tube to extend out,

like a spring released from a constraining box. These obser-

vations suggest that epididymal epithelial coiling may

result from the mesenchyme mechanically constraining the

growing epithelium longitudinally. This mechanism is further

supported by the observation that there is no circumferen-

tially biased pattern of proliferation that could account for

the coiling, but the head of the epididymis, which is the first

part to fold, has a higher proliferation rate than the body

or tail [8].

This folding pattern is recapitulated by a mechanical

model representing the epididymal epithelium as a chain of

spheres embedded in a viscous mesenchyme, with growth

modelled by randomly inserting additional spheres into the

chain. The temporal pattern of folding, with the head

region folding first, is mimicked by this model when

growth is restricted to the head region [8].

In the embryo, inhibiting smooth muscle differentiation

increases the wavelength of the epididymal folds. The model

produces a corresponding increase in wavelength when the

viscosity of the mesenchyme is decreased, suggesting that

smooth muscle plays a mechanical role in epididymal folding

by increasing the effective viscosity of the mesenchyme [8].

Although smooth muscle was not explicitly modelled as a

static tissue in this system, it again seems to play a passive,

stiffness-increasing role in epididymal development, rather

than actively contracting on the epithelium.
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6. Urinary and vascular systems
Even in systems where the mechanical morphogenetic effects

of smooth muscle have not been directly investigated, some

experimental evidence hints at a possible mechanical role

for smooth muscle in determining epithelial architecture.

(a) Urinary system
The ureter is an epithelial tube surrounded by thick smooth

muscle layers that propel urine from the kidneys to the blad-

der [22,24]. Several studies investigating the pathways

upstream of smooth muscle differentiation in the ureter

have generated knockouts of ureteric smooth muscle in

mice [9,64]. Some of these models do not develop smooth

muscle throughout the whole ureter [9], while others lack

smooth muscle only proximally [64]. These lead, in turn, to

dilation of the whole ureter [9] or just the proximal ureter

[64]. This dilation is thought to result from a lack of peristalsis

in the absence of smooth muscle. In light of the structural role

of smooth muscle in other tissues, however, it is possible that

smooth muscle physically supports the ureter, keeping it

from dilating in wild-type mice.

(b) Vascular system
The vascular endothelium is lined by a coat of smooth muscle

that regulates blood pressure and blood flow. Larger blood

vessels such as the aorta have elastic and smooth muscle

tissue in their walls, while medium-sized arteries have more

prominent smooth muscle coats. Veins have thin layers of

smooth muscle in their walls, which function to modulate

their fluid capacitance [22,24]. In capillaries, pericytes sparsely

wrap the thin endothelia and appear to serve similar functions

to the smooth muscle cells of larger blood vessels [65].

Vascular smooth muscle cells have many different devel-

opmental origins. For example, the smooth muscle cells of the

abdominal aorta arise directly from the local mesenchyme,

while the smooth muscle cells which line the aortic arch are

derived from neural crest cells that migrate from the folding

neural tube [66]. In adults, smooth muscle plays a mechanical

role in shaping blood vessels: smooth muscle constriction

causes the vascular endothelium to fold similarly to the oeso-

phagus [67], and smooth muscle contraction can support

blood vessels against buckling into twisted patterns [68],

the opposite of its role in the developing epididymis.

Several studies of vascular development have generated

transgenic mice with either decreased differentiation [69] or

recruitment [70] of vascular smooth muscle. In these models,

the blood vessels develop tortuously, and aneurysms and

haemorrhages appear diffusely in the embryo, suggesting

that smooth muscle mechanically sculpts the structure of

blood vessels by supporting the walls against dilation under

the pressure of the blood [69,70].

Similarly, in models of disordered pericyte development,

aneurysms develop in the microcirculation throughout the

body, suggesting that the capillary analogue of smooth

muscle plays a similar mechanical role [10,71].

7. The next step: studying smooth muscle
differentiation

A further study of smooth muscle in these systems requires

being able to identify a specific smooth muscle tissue of
interest in histological sections, whole-mount organs, or cul-

tured explants. These studies are a critical next step for

discovering how epithelial architecture is directed down-

stream of instructions by smooth muscle, or for discovering

additional organs that are mechanically shaped by smooth

muscle. For example, smooth muscle in the lung differen-

tiates in a precise pattern to drive epithelial bifurcation, and

understanding how that pattern is created is a key missing

piece of our understanding of lung morphogenesis. To sup-

port these investigations, we here review markers and

assays that are commonly used to distinguish among

smooth muscle-related tissues both in vivo and in culture.

On histology, smooth muscle typically appears as a sheet

of interconnected, elongated cells within connective tissue. It

is called ‘smooth’ muscle because it lacks the characteristic

striations observed in histological sections of skeletal and car-

diac muscle [22]. This is because the contractile apparatus of

smooth muscle consists of a meshwork of contracting actin

and myosin filaments instead of the highly regular, regimen-

ted arrangement of skeletal and cardiac muscle sarcomeres

[24]. As the locations of smooth muscle tissues in the adult

are well known, observing a sheet of cells that express a-

SMA in an anatomical area known to contain smooth muscle

(such as around the airway epithelium or in the wall of the

bladder) is often sufficient to classify it as smooth muscle.

However, several more specific markers have been identified

for distinguishing smooth muscle cells from similar cell

types, especially during embryonic development when the

final tissue architecture has not yet been established, or in

differentiation or cell sorting experiments. Most smooth

muscle markers are proteins associated with the cytoskeleton

or contractile machinery, including a-SMA [23], smooth

muscle myosin heavy chain (smMHC) [72], transgelin [73],

calponin [74] or meta-vinculin [75], while others are signal-

ling molecules or transcription factors, for example, serum

response factor (SRF) [76] (tables 1 and 2).

There are, however, other cell types that express classic

smooth muscle markers, including myofibroblasts and myo-

epithelial cells [108,109]. Myofibroblasts reside in the stroma

of many organs and synthesize extracellular matrix, similar

to fibroblasts. When epithelia are damaged, myofibroblasts

proliferate and synthesize matrix, but unlike fibroblasts they

also use their contractile properties to pull on the damaged

site and shrink its area [110]. Myofibroblasts also play roles

in organ development such as laying down matrix to guide

the development of pulmonary alveoli [111]. Myofibroblasts

are typically found as single cells within stromal tissue

while smooth muscle usually forms larger tissues of many

cells in the stroma. Myoepithelial cells are found as part of

the epithelium in secretory organs such as the salivary

gland and mammary gland [22,108]. There, they reside

between the secretory epithelial layer and the basement mem-

brane (which separates the epithelium from the underlying

stroma) and express both epithelial and smooth muscle mar-

kers [108]. By contracting, they help squeeze out the exocrine

products of the gland [22]. These cells are distinct from

smooth muscle because they reside above the epithelial base-

ment membrane and express E-cadherin and other epithelial

markers [108].

There is significant heterogeneity even among smooth

muscle: that which lines internal organs such as the gut (visc-

eral smooth muscle) differs from the smooth muscle which

lines blood vessels (vascular smooth muscle). There are

http://rstb.royalsocietypublishing.org/


Table 1. Cellular functions of common smooth muscle markers. SMA, smooth muscle actin; smMHC, smooth muscle myosin heavy chain; APEG-1, aortic
preferentially expressed gene-1; LPP, lipoma-preferred partner; SRF, serum response factor; MRTF, myocardin-related transcription factor; HEYL, hairy/enhancer-of-
split related with YRPW motif-like protein; NG-2, neural/glial antigen 2; Foxf1, forkhead box F1; GATA-5, GATA family zinc finger transcription factor-5.

marker function refs

a-SMA cytoskeletal and contractile fibre protein [77,78]

g-SMA cytoskeletal and contractile fibre protein [77 – 79]

smMHC contractile protein interfacing with smooth muscle actin [72]

transgelin filamentous actin-binding and -stabilizing protein (SM22a) [73]

calponin calcium-binding protein for activation of contraction [74]

caldesmon links calponin activation to smooth muscle actomyosin contraction [80]

actinin cross-linking protein for actin and other cytoskeletal filaments and adhesions. Present at dense bodies and

adhesion plaques (intercellular junctions); isoforms 2 and 3 are specific to muscle, but not isoforms 1 and 4

[81,82]

APEG-1 unclear function, but has homology to other smooth muscle proteins like smooth muscle myosin light chain kinase [83]

LPP associated with focal adhesions and is implicated in cellular motility [84,85]

SRF master transcription factor for smooth muscle genetic programme [12,76]

myocardin SRF coactivator [86]

MRTF-A SRF coactivator [76,86]

MRTF-B SRF coactivator [76,86]

leiomodin-1 nucleates actin polymerization in both smooth and striated muscle cells; isoform 1 is specific to smooth muscle [30,87,88]

desmin intermediate filament in all muscle cell types [75,89]

vimentin intermediate filament in all mesenchymal cells (including muscle cells) [75,89,90]

meta-vinculin actin-binding protein that may modulate vinculin binding to actin at cell – cell and cell – matrix junctions [91]

telokin protein with the same sequence as the C-terminal domain of myosin light chain kinase; binds to myosin and

contributes to smooth muscle relaxation

[92]

smoothelin A smooth muscle cytoskeletal protein that binds filamentous actin; short isoform found in visceral smooth muscle [93]

smoothelin B long smoothelin isoform found in vascular smooth muscle [93]

HEYL Notch responsive transcription factor [94]

noggin binds to and inhibits bone morphogenic protein (BMP) family members [95]

NG-2 transmembrane proteoglycan in vascular smooth muscle [96]

Foxf1 forkhead box family transcription factor necessary for proper development of the lung and the foregut [97,98]

GATA-5 transcription factor found in muscle during cardiovascular and airway development [99]
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further phenotypic differences even among vascular smooth

muscle from different vascular beds including the coronary

arteries, aorta, and pulmonary artery [100,112]. In addition,

the smooth muscle that surrounds the epithelium of the

larger airways of the lung (airway smooth muscle, ASM) is

considered separately from visceral smooth muscle because

it is heavily studied in the pathophysiology of asthma [113].

Given this heterogeneity, several markers have been

identified to distinguish among these cell types (table 2).

For example, smoothelin is expressed exclusively in smooth

muscle cells (and not in myofibroblasts) and has two

isoforms, A and B [23]. Smoothelin A is the shorter isoform

and is found in visceral smooth muscle and ASM, while

smoothelin B (the longer isoform) is found in vascular

smooth muscle [114–117]. Additionally, hairy/enhancer-of-

split related with YRPW motif-like protein (HEYL) is expressed

in vascular smooth muscle while noggin is expressed in ASM.

Reporters for these genes have been used to distinguish among

these tissues during lung development [105]. These markers

are used alongside cellular morphology, tissue structure and

contractile function to identify cells that have differentiated

into smooth muscle during embryonic development.
8. Conclusion
In each of the systems described above, it appears that the

stiffness of the smooth muscle tissue rather than cell shorten-

ing is sufficient to drive the morphogenesis of an underlying

proliferating epithelium or endothelium. This property

makes each developing system strikingly simple: once the

location of smooth muscle differentiation is specified, the

system falls into the correct morphology simply by assuming

its lowest energy state.

Many of these organs have similar morphologies, for

example the lumina of the gut, airway and oviduct are all

folded longitudinally at one point in time. This seems to be

because the circumferential length of the epithelium is longer

than the stiff surrounding smooth muscle layer. However,

smooth muscle shapes the overall structure of the lung and epi-

didymis into quite different structures. In the airway, this is

achieved through precise control over where smooth muscle

differentiates. In the epididymis, smooth muscle has the

unique effect of causing the epithelial tube to coil. Future

work is needed to determine if this unique behaviour is due

to the thickness of the epididymal epithelial cells relative to

http://rstb.royalsocietypublishing.org/


Table 2. Smooth muscle markers and their expression patterns in smooth muscle cells and myofibroblasts. Blanks indicate that definitive information of the
expression of the protein in that cell type has not been found. SM, smooth muscle. For other abbreviations, see the caption for table 1.

marker vascular SM visceral SM airway SM myofibroblast refs

a-SMA more less intermediate yes [23,77,100]

g-SMA less more intermediate yes [23,77,80]

smMHC SM-1, SM-2, SM-A SM-1, SM-2, SM-B SM-1, SM-2, SM-B low [12,101,102]

transgelin yes yes yes yes [6,100]

calponin yes yes yes yes [12]

caldesmon yes yes yes yes [12]

actinin yes yes yes yes [82,103]

APEG-1 more less less [12]

LPP more less less [12]

SRF yes yes yes yes [12]

myocardin yes yes yes yes [86]

MRTF-A yes yes yes yes [104]

MRTF-B yes yes yes yes [104]

leiomodin-1 yes yes yes yes [12,30]

desmin yes yes yes yes [75,89]

vimentin yes yes yes yes [75,89,90]

meta-vinculin yes yes yes yes [12]

telokin less more [12,23]

smoothelin A no yes yes no [23,100]

smoothelin B yes no no no [23,100]

HEYL during development no [94,105]

noggin no during development [105,106]

NG-2 yes no [56,96,107]

Foxf1 no yes [12]

GATA-5 no yes [12]
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the lumen diameter or to a looser connection between the epi-

thelium and smooth muscle in this system. Fully understanding

the mechanics of these developing systems will require more

detailed measurements of the in vivo stiffness and stiffness

anisotropy of intact, embryonic smooth muscle tissues.

The next step towards fully understanding the genetic

control of these systems is investigating how differentiation

of smooth muscle is controlled. This is particularly important

in the lung, where smooth muscle differentiates in a highly

stereotyped asymmetric pattern. Future studies will need to

focus on carefully understanding what controls smooth

muscle differentiation, and in vitro assays will need to clearly

define whether a progenitor cell has differentiated into

smooth muscle based on its expression of specific markers

and its functional phenotype.

Smooth muscle is a widespread tool for directing

epithelial morphogenesis. Therefore, understanding these

systems may produce broadly applicable insights into both

normal development and developmental disorders of the

lung, gut, reproductive system, or any other epithelial tissue

ensheathed by smooth muscle. Furthermore, investigating

how nature uses smooth muscle as a morphogenetic tool

may help us understand how to repurpose it for engineering

organs in clinical applications. For example, artificial tissues

may be built with a predefined pattern of smooth muscle
and cultured in a homogeneous field of growth factors,

which we would predict would cause the epithelium to pro-

liferate uniformly but buckle into the desired morphology

under the spatial and mechanical constraint of the smooth

muscle. Inducing mechanical instabilities in epithelia is an

effective and efficient mechanism for forming tissues. The

above discoveries illustrate that smooth muscle is a frequent

driver of mechanical instabilities, a powerful sculptor of

organs during embryonic development, and a promising

area for future study in both developmental biology and

tissue engineering.
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