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Abstract

Single-cell RNA-sequencing (scRNA-seq) and related technologies to identify cell types
and measure gene expression in space, in time, and within lineages have multiplied
rapidly in recent years. As these techniques proliferate, we are seeing an increase in their
application to the study of developing tissues. Here, we focus on single-cell invest-
igations of branching morphogenesis. Branched organs are highly complex but
typically develop recursively, such that a given developmental stage theoretically con-
tains the entire spectrum of cell identities from progenitor to terminally differentiated.
Therefore, branched organs are a highly attractive system for study by scRNA-seq.
First, we provide an update on advances in the field of scRNA-seq analysis, focusing
on spatial transcriptomics, computational reconstruction of differentiation trajectories,
and integration of scRNA-seq with lineage tracing. In addition, we discuss the possibil-
ities and limitations for applying these techniques to studying branched organs. We
then discuss exciting advances made using scRNA-seq in the study of branching
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morphogenesis and differentiation in mammalian organs, with emphasis on the lung,
kidney, and mammary gland. We propose ways that scRNA-seq could be used to
address outstanding questions in each organ. Finally, we highlight the importance of
physical and mechanical signals in branching morphogenesis and speculate about
how scRNA-seq and related techniques could be applied to study tissuemorphogenesis
beyond just differentiation.

Abbreviations
AT1 alveolar type 1

AT2 alveolar type 2

ECM extracellular matrix

Fgf10 fibroblast growth factor 10

Fgfr2 fibroblast growth factor receptor 2

FACS fluorescence activated cell sorting

FRET F€orster resonance energy transfer

GDNF glial cell line-derived neurotrophic factor

PGK 3-phosphoglycerate kinase

pMLC phosphorylated myosin light chain

Shh Sonic hedgehog

TEB terminal end bud

Wnt Wingless-related integration site

1. Introduction

Branching morphogenesis requires reciprocal interactions between

branching epithelia and their surrounding supporting cells within the mes-

enchyme, including endothelial cells and adipocytes. Patterning of branched

organs is a complex process that integrates molecular and physical signals and

involves crosstalk between cell types. The cellular networks that are gener-

ated during branching morphogenesis are critical to organ development and

function. Therefore, it is essential to understand how these cellular networks

arise and evolve throughout development.

With the advent of single-cell RNA sequencing (scRNA-seq) approaches,

researchers can now simultaneously profile the gene expression patterns

of diverse cell types. These techniques are currently widely used in all areas

of biology to investigate many different species. Whole organisms can be

sequenced at multiple developmental stages, as has been reported for

C. elegans, Ciona intestinalis, and Drosophila melanogaster (Cao et al., 2019;

Karaiskos et al., 2017; Packer et al., 2019). In larger organisms, including
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mammals, transcriptomes have been constructed for the earliest stages of

development (Nakamura et al., 2016; Sasaki et al., 2016). During later stages

of development or in mature animals, maps of whole organs have been

created (Schaum, Karkanias, Neff, et al., 2018).

The development of branched organs occurs recursively, with each stage

of the branching process repeating over and over in different parts of the

organ. Consequently, single snapshots in time could potentially include cells

at each stage of the process of morphogenesis and differentiation. This

property makes the study of branching morphogenesis by single-cell trans-

criptomics especially attractive. In this review, we ask: what can we uncover

about the cellular networks that drive branching morphogenesis using

single-cell transcriptomics? First, we discuss how technological and compu-

tational advances in scRNA-seq can be used to study the morphogenesis of

branched organs. In Section 2, we provide an overview of scRNA-seq-

related tools that are particularly applicable to studying development and

differentiation. In Section 3, we describe examples of cellular networks

and physical factors that direct cell differentiation and morphogenesis in

branched organs. Specifically, we highlight recent advances in the study

of lung, kidney, and mammary gland organogenesis that have been enabled

by scRNA-seq approaches. We also discuss examples of how single-cell

transcriptomics might be used to deepen our understanding of cellular net-

works in branchingmorphogenesis. Finally, in Section 4, we speculate about

how single-cell transcriptomics and related technologies could be used to

uncover the morphological and physical changes that influence organ

development and cell differentiation.

2. scRNA-seq tools for studying morphogenesis

Cells evaluated by scRNA-seq are characterized based on the comple-

ment of genes that they express (their transcriptomes), allowing us to cluster

them into specific cell types. Cells with similar transcriptional profiles will

appear as neighbors in low-dimensional representations of scRNA-seq

data, such as t-stochastic neighbor embedding (tSNE) or uniform manifold

approximation and projection (UMAP) plots (McInnes, Healy, & Melville,

2018; van der Maaten & Hinton, 2008). For example, epithelial cell types of

the lung, including ciliated and clara cells of the airways as well as alveolar

type 1 (AT1) and type 2 (AT2) cells, would all be clustered by type and

appear as neighbors in low-dimensional representations based on their trans-

criptomes (Fig. 1A–B). Commonly used clustering packages for scRNA-seq
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Fig. 1 Primer for scRNA-seq analyses. (A) Schematic illustrating some of the different epithelial cell types in a developing mouse lung.
(B) UMAP representation of scRNA-seq data of mouse lung epithelial cells isolated at E18.5 (Treutlein et al., 2014) generated using the
Seurat package (Butler, Hoffman, Smibert, Papalexi, & Satija, 2018) showing clusters of each epithelial cell type in (A). Note that neighbors
in the UMAP are not physical neighbors within the tissue, but cells with similar transcriptomes. (C) Diffusion analysis of cell types indicated in
(A) showing transitions between different cell identities implemented using the Destiny algorithm (Haghverdi, Buettner, & Theis, 2015).
(D) Lineage diagrams inferred from diffusion analysis in (C).



data include Seurat (Butler et al., 2018) and Monocle (Trapnell et al., 2014).

Importantly, the typical experimental pipeline of dissociating tissues into a

single-cell suspension destroys all spatial information (such as physical neigh-

bors, as opposed to neighbors in the high-dimensional space of trans-

criptomic data). In Section 2.1, we discuss several approaches that have

been developed to address this caveat by computationally inferring or

experimentally preserving spatial information in scRNA-seq experiments.

While clustering can be used to identify cell types, other algorithms have

been developed to study transitions between them. These tools are especially

useful for the study of morphogenesis, since developing tissues should con-

tain a continuum of differentiating cells. For example, diffusion analysis

implemented using the Destiny algorithm identifies transition probabilities

between cells in high-dimensional space. Diffusion analysis works by all-

owing each cell to move around its position according to a defined wave

function and computing the interference between the wave functions of

each pair of cells (Haghverdi et al., 2015). The resulting diffusion compo-

nents (similar to principal components in principal components analysis)

capture variability in the dataset and can be used to infer differentiation tra-

jectories. In our example above of epithelial cell types in the lung, we would

expect that diffusion analysis could order cells along the trajectory from

bipotent progenitor to differentiated cell, with separate paths for AT1 and

AT2 cells (Fig. 1C–D). Diffusion analyses provide a simple way to infer dif-

ferentiation trajectories from a single dataset, but of course biological tran-

sitions such as those occurring during morphogenesis are quite complex. In

Section 2.2, we provide an overview of computational tools designed to

reconstruct complex differentiation trajectories. Finally, simply observing

a single time point by scRNA-seq may not provide sufficient temporal

information, necessitating the use of lineage tracing in combination with

transcriptomics (Wagner & Klein, 2020). In Section 2.3, we describe some

experimental extensions to traditional scRNA-seq analyses that enable more

detailed reconstructions of lineage decisions.

2.1 Integrating spatial information with scRNA-seq
The typical scRNA-seq pipeline discards all spatial information. In this sec-

tion, we discuss different strategies for integrating spatial information with

scRNA-seq. Novel cell types and marker genes can be mapped back onto

the tissue of interest using experimental validation or computational infer-

ence. To visualize gene expression in situ at subcellular resolution, target
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RNAs can be visualized using multiplexed fluorescence in situ hybridization

(FISH). Alternatively, in situ RNA sequencing can be used to profile all

RNAs within a tissue at subcellular resolution. Finally, slide-based methods

can be used to capture scRNA-seq data in such a way that positional

information is encoded.

The simplest approach to map clusters identified by scRNA-seq back

onto the tissue is by immunostaining or in situ hybridization. These tech-

niques have been used to confirm the presence of novel cell clusters or to

validate the expression patterns of new marker genes. In one example,

marker genes for computationally identified clusters of bipolar cell types

of the retina were validated by combining sparse labeling of cell boundaries

(to enhance spatial resolution in such a tightly-packed tissue) with FISH for

genes expressed even at low levels (Shekhar et al., 2016).

Depending on the complexity of the architecture of the target tissue and

the variety of cell types, it is sometimes possible to infer spatial coordinates

within a tissue from single-cell data based on the analysis of published in situ

hybridization datasets. In some cases, trends in the data happen to recapit-

ulate spatial patterns in the embryo, as in a recent scRNA-seq study of

the mouse gut endoderm in which the main diffusion component of the

single-cell data reflected variability along the anterior–posterior axis of

the gut tube (Nowotschin et al., 2019). Otherwise, more complex mappings

need to be generated. The initial publication of the Seurat algorithm

included such an approach to identify spatial expression patterns in the

zebrafish embryo at the blastula stage (Satija, Farrell, Gennert, Schier, &

Regev, 2015). Taking advantage of published in situ data and the simple

geometry of the zebrafish embryo, a spatial gene-expression map was con-

structed that could be compared to single-cell transcriptomes. Based on sim-

ilarity between expression patterns, the probable original locations of each

cell in the scRNA-seq dataset within the embryo could be inferred.

DistMap used a similar idea to generate three-dimensional maps of predicted

gene expression in the Drosophila embryo at the onset of gastrulation

(Karaiskos et al., 2017). Similar approaches have also been applied to spatial

mapping of scRNA-seq data in the Drosophila wing imaginal disc (Deng

et al., 2019).

Computationally mapping scRNA-seq data onto a target tissue is most

easily accomplished when the tissue has a simple geometry that is reproduc-

ible between individuals. As a result, it may be challenging to generate faith-

ful mappings of tissues with complex architecture like those of branched

organs. It is therefore also important to consider less probabilistic,
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experimental ways of mapping gene expression of novel clusters onto the

tissue of interest or for discovering new spatial expression patterns. To

address this need, a plethora of technologies have been developed to either

spatially map the expression of more and more genes (multiplexing) or to

obtain complete transcriptomes in situ (in situ sequencing).

Multiplexed FISH can be used to identify several individual mRNAs

within cells while preserving spatial information. These approaches can

be especially useful for mapping many different cell types identified by

scRNA-seq within highly heterogeneous tissues. Barcodes made up of mul-

tiple probes that are conjugated to different fluorophores permit the simul-

taneous visualization of multiple mRNAs (more than the number of

fluorophores), with the number increasing as barcode complexity increases

(Chen, Boettiger, Moffitt, Wang, & Zhuang, 2015; Levsky, Shenoy,

Pezo, & Singer, 2002; Lubeck & Cai, 2012). In one technique, different sets

of labeled probes are hybridized to RNAs within a fixed cell over the course

of multiple rounds of washing or digesting with DNase followed by imaging

in order to spatially map RNA sequences of interest (Fig. 2Ai–ii). Other

strategies include localizing mRNAs within fixed cells based on the spatial

ordering or spectral overlap of fluorophores bound to probes that hybridize

adjacent to each other on an RNA molecule of interest (Fig. 2Aii–iii)
(Lubeck, Coskun, Zhiyentayev, Ahmad, &Cai, 2014). The single-molecule

imaging required for multiplexed FISH is technically challenging, especially

in tissues that scatter light or that are autofluorescent. To overcome these

issues in order to study cell types in the lung, Nagendran et al. developed

a multiplexed approach called proximity ligation in situ hybridization

(PLISH). Briefly, rolling-circle replication is initiated at hybridized probes

to generate long amplicons with many repeated barcodes to which several

“imager” oligonucleotides can bind, thus increasing the number of

fluorophores at a given RNA and drastically increasing the signal-to-noise

ratio (Nagendran, Riordan, Harbury, & Desai, 2018).

Recent work has extended these kinds of techniques to live cells. For

example, Atmanli et al. have designed a technique called multiplex analysis

of gene expression in individual living cells (MAGIC), in which live cells are

cotransfected with an RNA probe and an engineered double-stranded

RNA-binding protein that are each labeled with an acceptor or donor fluo-

rophore, respectively. When the probe and the binding protein are both

bound to a target RNA, a FRET signal can be detected (Atmanli et al.,

2019). Combining MAGIC probe and protein pairs with different

fluorophores and/or FRET pairs scales this technique up to enable the
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Fig. 2 Combining spatial information with scRNA-seq. (A) Multiplexed FISH, which
combines many probes with few fluorophores, enables visualization of several different
RNA sequences within a single sample. Increasing numbers of RNA sequences can be
visualized by using successive rounds of hybridization, imaging, and washing (i) or by
using spatial barcoding (ii), and higher-resolution FISH for denser mRNAs can be
achieved using spectral barcoding (iii). In spatial barcoding (ii), probes for adjacent
regions of RNA can be labelled with different fluorophores so that spatial ordering of
fluorophores can identify different mRNAs. In spectral barcoding (iii), probes for adja-
cent regions of RNA can carry activator/emitter fluorophore pairs so that emitter signal
is only detected when both probes have bound the same RNA molecule. (B) In situ RNA
sequencing allows for detection of transcripts within a cell without the need for specific
probes. Random hexamer primers initiate reverse transcriptase activity and generate
cDNAwithin the sample, and the resultant cDNA is then cross-linked to the cell’s protein
matrix to preserve its location. After circularization, DNA polymerase generates cDNA
amplicons that are also cross-linked in place and that can be sequenced in situ.
(C) Slide-seq uses barcoded droplets (similar to Drop-seq) that have known spatial coor-
dinates on a slide. Tissue sections placed on these slides will deposit mRNA onto each
droplet, and a map of transcriptomes can be reconstructed based on droplet barcodes
and the slide layout.
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visualization of multiple RNAs within living cells, and could be used to

track changes in gene expression during morphogenesis. However, this

technique is subject to imaging constraints due to spectral overlap between

FRET pairs, and therefore cannot be scaled up to the same extent as the

approaches discussed above that have been applied to fixed cells.

Multiplex FISH and related techniques can be very informative but

require prior knowledge of RNA sequences of interest and careful probe

design. Unlike scRNA-seq, these approaches are therefore limited to

known marker genes and cannot be used to discover new ones. To find

new marker genes while also maintaining spatial context, alternative tech-

niques such as RNA sequencing in situ have been developed. For example,

fluorescent in situ sequencing (FISSEQ) involves reverse transcribing RNA

within fixed cells to generate cDNA amplicons that are then cross-linked to

the cellular protein matrix to preserve their position within the sample

(Fig. 2B) (Lee et al., 2014). The amplicons can then be directly sequenced

within the tissue using standard sequencing approaches based on imaging the

sequential ligation of labeled oligonucleotides. This approach is most suit-

able for cells or thin sections and has been applied to whole fruit fly embryos.

Extending this approach to thicker samples or adult tissues may require

combining in situ sequencing approaches with sample clearing. For exam-

ple, transcriptome mapping in thick sections of the mouse brain was accom-

plished by embedding samples in hydrogels to which amplicons could be

crosslinked, and then removing proteins and lipids to render the samples

optically transparent (Wang et al., 2018). This approach maintains physical

context and enhances imaging capabilities to generate high-resolution spatial

transcriptomic data. This adaptation could also be applied to carry out in situ

RNA-sequencing of branching organs, given that a sufficient number of

morphological features could be captured in thick sections. Of the tech-

niques discussed here, multiplex FISH and in situ sequencing have the

highest level of resolution since they can map transcripts to their subcellular

locations.

Finally, slide-based spatial transcriptomics is an alternative approach to

spatial RNA-sequencing that enables untargeted readouts of RNA content

with positional information, albeit with lower spatial resolution. For exam-

ple, in Slide-seq, tissue sections are transferred onto a slide that is coated with

beads carrying knownDNA barcodes, whichmap them to their positions on

the slide (Fig. 2C) (Rodriques et al., 2019). Each bead collects RNA from

the tissue sample around it, and then beads are recovered from the slide and

can be processed by standard scRNA-seq protocols. Based on the barcodes,
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a spatial map of RNA expression can be constructed (Fig. 2C). The main

caveat to this approach is the spatial resolution: depending on inter-bead dis-

tance, a given bead could potentially collect RNA from adjacent cells (of

different cell types). However, each bead from the slide can in principle

be mapped to one or two cell types (Rodriques et al., 2019), demonstrating

that close to single-cell resolution can achieved with this approach.

Naturally, the ideal spatial transcriptomic approach for studying branched

tissues depends on the biological question being asked. The three-dimensional

architecture of branched organs poses problems for many of the spatial gene-

expression profiling approaches discussed above, which are most successful for

(or exclusive to) tissue sections. However, since branched organs typically

contain many repeated units of tissue structures, it may be possible to apply

certain computational mappings usually reserved for simple geometries, or

to make more confident conclusions based on tissue sections.

2.2 Reconstructing differentiation trajectories with scRNA-seq
Developing tissues, especially those that undergo recursive morphogenesis

such as branching, contain cells at each stage of differentiation. Therefore,

single cells isolated from a given tissue can theoretically be ordered along

“pseudotime” from the most undifferentiated to the most terminally differ-

entiated. Several pseudotemporal ordering algorithms have been developed

for single-cell transcriptomics and other single-cell modalities, and most are

available as open-source software packages. Importantly, these methods typ-

ically do not require sequential experimental time points, as would be

required for bulk RNA-seq studies of differentiation, as they assume that

temporal information can be inferred from the spectrum of cell states within

a single sample.

In addition to its clustering utilities, Monocle was originally developed as

a method for ordering cells along developmental trajectories (Trapnell et al.,

2014). In this approach, dimensional reduction algorithms are first applied to

transform data from a high-dimensional Euclidean space (in which each

dimension corresponds to a gene) to a low-dimensional space that preserves

the essential relationships between each cell’s transcriptome. Next, a tree is

constructed that connects all cells in low-dimensional space. In this context,

the tree represents a graph connecting all cells to each other in low-dimensional

space, with weights assigned to each branch between cells. The tree is then

simplified to generate a minimum spanning tree (MST), which only retains

branches such that the total weight of all branches is minimized (i.e., selecting
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for branches that connect cells to their closest neighbor) and such that all cells

are still attached to the tree. TheMonocle algorithm then identifies the longest

path through theMST to produce a trajectory alongwhich cells can be ordered

and that ideally recapitulates the incremental changes in gene-expression pro-

files that occur during differentiation. An alternative approach, called

Wanderlust, starts by converting data to a nearest-neighbor graph, and then

moves through the high-dimensional graph following the shortest path from

a user-defined “initiator” cell, which gives the trajectory an orientation (e.g.,

from a progenitor “initiator” through differentiation). Longer trajectories are

associated withmore noise, soWanderlust uses “waypoint” cells tomore accu-

rately map cells along the entire length of the trajectory (Bendall et al., 2014).

Whereas diffusion analysis and the original Monocle algorithm can be

used to identify simple differentiation trajectories, the biological reality is

often more complex. Progenitor cells can give rise to several differentiated

cell types with distinct gene-expression programs, and transdifferentiation or

convergent differentiation can complicate these trajectories even further.

Branch points in datasets sampled from different time points can be identi-

fied using the SCUBA algorithm (Marco et al., 2014), for example, but one

of the most attractive features of single-cell data is that an individual sample

can contain all developmental time points. Methods for analysis of datasets

without external temporal information are therefore highly desirable. To

meet these needs, algorithms have been designed to identify branch points

along pseudotime. The successor to Wanderlust, called Wishbone, specifi-

cally orders cells along bifurcating developmental trajectories (Setty et al.,

2016). Wishbone infers trajectories from a low-dimensional representation

of the data obtained using diffusion maps. Projecting the data onto the top

diffusion components effectively removes noise and spurious connections

between cells, which are especially problematic near branch points. It then

employs the waypoints innovation from Wanderlust to identify branch

points, since the perspectives of waypoints on different branches relative

to each other and to the initiator cell will be different. Importantly,

Wishbone can only recapitulate differentiation trajectories with one or

two final fates.

Several approaches have also been developed to map trajectories with

more branches. In the MPath algorithm, clusters from single-cell data are

used to define landmarks (i.e., representative cell states or specific gene-

expression profiles) that can be connected by graphs (Chen, Schlitzer,

Chakarov, Ginhoux, & Poidinger, 2016). Cells are then compared to each

landmark and placed on edges between those that they most closely
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resemble. Finally, anMST is created that connects all landmarks and that takes

into account howmany cells occupy each edge in order to build the final tra-

jectory. A similar approach, Slingshot, builds MSTs on low-dimensional data

that have already been clustered, and then employs a curve-fitting approach to

estimate the transitions between clusters (Street et al., 2018). To order cells in

pseudotime, they are then assigned positions along the principal curves

between clusters based on their Euclidean distance from the curve. Since these

approaches rely on accurate landmark selection, they are limited by how well

the data can be clustered initially. Developmental trajectories with stable inter-

mediate states (i.e., where large numbers of cells at similar stages of differen-

tiation can be sequenced) will likely be easier to cluster faithfully and thus

provide more accurate landmarks.

Other approaches have been developed that map transitions between all

cells (and that are therefore not as dependent upon initial clustering), includ-

ing Monocle2 (Qiu et al., 2017) and Palantir (Setty et al., 2019), both

evolutions of algorithms discussed above (Monocle and Wanderlust/

Wishbone). Monocle2 employs a machine-learning approach called reverse

graph embedding (RGE) that can infer differentiation trajectories without

any prior knowledge of progenitor cell identity, the number or character-

istics of terminally differentiated states, or the number of branch points

(Qiu et al., 2017). The algorithm uses a subset of automatically identified

genes based on their differential expression between cell types identified

by tSNE and clustering (effectively reducing dimensionality by focusing

on a subset of genes), and then applies RGE to find a faithful mapping

between high- and low-dimensional space while simultaneously learning

the shape of the principal graph (i.e., the branched curve that best passes

through the data) in low-dimensional space. In contrast, Palantir builds upon

the earlier tools to enable reconstruction of trajectories with multiple bra-

nches and estimates cell-fate probabilities by modeling differentiation as a

Markov process: the algorithm assumes that progression along a differenti-

ation trajectory occurs in stochastic, incremental steps (Setty et al., 2019).

This approach allows Palantir to estimate probabilities between distant cells

and to define “differentiation potentials” for each cell. Cells from early steps

in pseudotime will have equal differentiation potential for each terminal

state, whereas cells from further along pseudotime that have passed branch

points will have a high differentiation potential for the terminal state at the

end of the branch in which they reside and a low differentiation potential for

the other terminal states.
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Pseudotime analyses could be quite useful for investigating branching

morphogenesis, and choice of algorithm could depend on anticipated com-

plexity of the differentiation tree in the tissue of interest. Importantly, these

computational approaches (while usually informative) provide us only with

probabilities that must be tested experimentally.

2.3 scRNA-seq combined with lineage tracing
Pseudotime analyses have provided invaluable insights into the mechanisms

of cell differentiation in development and homeostasis, but they must often

be validated with lineage-tracing experiments. To circumvent this require-

ment, some researchers have incorporated lineage tracing directly into

scRNA-seq experiments. Pulse-seq is a simple and elegant way to incorpo-

rate true lineage tracing into scRNA-seq experiments, and was used to track

airway epithelial cell differentiation during homeostasis (Montoro et al.,

2018). In pulse-seq, mice expressing inducible fluorescent lineage reporters

are harvested and sequenced at different stages after induction to label both

progenitor cells as well as the differentiated cells they generate (Fig. 3A). If an

airway epithelial basal-cell marker is used for lineage labeling, for example,

then label-positive and -negative cells can be sorted and sequenced sepa-

rately prior to re-integration for data analysis, or the lineage label could

be read out in the scRNA-seq data. In data collected shortly after

lineage-label induction, the label-positive cells will contribute only to the

basal-cell cluster, while data collected weeks after label induction will

include label-positive cells in all of the clusters that can be generated by

the basal-cell progenitors. While informative, this approach requires prior

knowledge of progenitor markers, preventing discovery of novel markers,

and provides population-level lineage tracing, thus obscuring any variability

among basal cells that could influence their differentiation.

An alternative strategy for lineage labeling is to incorporate barcodes into

cells that can be used to reconstruct their histories. Several techniques have

been developed to accomplish this using different approaches for barcode

design and recovery (Kebschull & Zador, 2018; Wagner & Klein, 2020).

One of the earliest techniques developed for cellular barcoding to infer lin-

eage was called GESTALT, or genome editing of synthetic target arrays for

lineage tracing (McKenna et al., 2016). Briefly, an array of CRISPR/Cas9

targets is engineered into the genome (downstream of a transcribed reporter

gene) and cells harboring this barcode are transfected with a plasmid
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Fig. 3 Combining lineage information with scRNA-seq. (A) Classic lineage-tracing
approaches like Cre-lox mouse models can be combined with scRNA-seq to determine
how progenitor cells (that express Cre and a reporter) contribute to different cell types
by collecting and analyzing lineage-labeled samples at different time points. In this
example, the contribution of basal cells to other lineages in the airway epithelium is
assessed using pulse-seq. (B) Dynamic barcoding can be used to trace cell lineages
by multiplexed FISH or by scRNA-seq. In one such technique, a specific barcode and
an adjacent scratchpad sequence in multiple places throughout the genome under
the control of a PKG promoter. The scratchpad regions undergo stochastic Cas9-
mediated mutagenesis as cells proliferate, and incremental changes in the sequences
of a cell’s scratchpads can be detected by FISH and used to infer lineage relationships.
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encoding Cas9 and the guide RNA. The targets within the barcode are opti-

mized and arranged such that the first is a perfect match for the guide RNA

and the last is the least-favorable binding sequence. Over successive rounds

of division, Cas9 edits the target sequences somewhat stochastically, causing

random and heritable alterations to the barcode that can be read with DNA

or RNA sequencing. By incorporating barcodes and the CRISPR/Cas9

components into zebrafish embryos at the one-cell stage, each organ could

be harvested from adults and sequenced to determine how many different

barcodes it contained. Most organs carried only a few barcodes, which

tended to be distinct from those in other organs, suggesting that the majority

of cells within each tissue in the adult are derived from just a few embryonic

precursors.

A slightly different technology, memory by engineeredmutagenesis with

optical in situ readout (MEMOIR), also uses CRISPR/Cas9-mediated

dynamic barcoding, but edits are made at several loci instead of within a

single barcode region (Frieda et al., 2017). In MEMOIR, Cas9 generates

double-stranded breaks within “scratchpad” regions adjacent to unique

barcodes throughout the genome. As cells proliferate, their collection of

scratchpads undergoes stochastic and incremental changes due to Cas9 activ-

ity that are heritable and can therefore be analyzed and traced to infer lineage

relationships (Fig. 3B). The barcode and scratchpad regions are downstream

of a 3-phosphoglycerate kinase (PGK) promoter, and their mRNA can be

detected and identified by specific probes using sequential single-molecule

FISH. At the same time, gene expression can be measured using single-

molecule (and possibly multiplexed) FISH. This approach differs in func-

tionality from GESTALT, as it can also be used to examine gene expression

in each cell lineage. One interesting aspect of this technique is that barcodes

and scratchpads can be identified in situ—conceivably, one could engineer

an embryo or an organoid to express the MEMOIR components and then

spatially map cellular histories.

To truly combine scRNA-seq with lineage tracing, barcodes need to be

detected using the same experimental pipeline as that for a normal sequenc-

ing experiment and then faithfully assigned to cells along with their trans-

criptomes. Several groups have created techniques to accomplish this

goal, including the developers of GESTALT, which could only be used

to trace lineages at the tissue level and not in single cells. The evolution

of this approach, termed scGESTALT, relies on transcription of the cell

barcode into mRNA that can be detected using scRNA-seq (Raj et al.,

2018). Other comparable techniques also applied to zebrafish development
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include ScarTrace (Alemany, Florescu, Baron, Peterson-Maduro, & van

Oudenaarden, 2018), which similarly uses a genomic barcode region at a

single locus, and lineage tracing by nuclease-activated editing of ubiquitous

sequences (LINNAEUS) and TracerSeq, which use multiple barcodes

distributed throughout the genome (Spanjaard et al., 2018; Wagner et al.,

2018). Similar progress has also been made in the study of mammalian devel-

opment by introducing barcoding sequences (via a piggyBac transposon that

efficiently inserts into the genome) along with sperm constitutively

expressing Cas9 into the oocyte and then transplanting blastocysts into

female mice (Chan et al., 2019), or by crossing females harboring the

barcoding sequences to males constitutively expressing Cas9, allowing

barcoded embryos to develop entirely in vivo (Kalhor et al., 2018). In both

cases, continuous barcoding occurs throughout gestation after zygotic

genome activation.

Importantly, all these approaches start barcoding from the beginning of

embryogenesis, which may limit their use for the study of branching mor-

phogenesis since most branched organs begin developing partway through

embryogenesis or during puberty. Indeed, both scGESTALT and ScarTrace

studies revealed that Cas9-mediated barcode editing activity ends by the

time gastrulation is complete (Alemany et al., 2018; Raj et al., 2018).

scGESTALT overcomes this issue by combining early and late barcoding:

early barcode editing is carried out by Cas9 protein injected at the one-cell

stage, while late barcode editing is carried out by inducible Cas9 expression

under the control of a heatshock-sensitive promoter (Raj et al., 2018).

How these technologies might be adapted to study the developing mam-

malian lung or kidney, for example, is not yet clear. Inducible editing is a

promising avenue, albeit by means other than heatshock, and could theoret-

ically be carried out using tissue-specific Cre-mediated induction of Cas9.

However, the computational challenges are enormous since barcoding

would begin simultaneously in many cells. Barcoding of heterogeneous

populations has been carried out in mammalian hematopoietic cells that

are either allowed to proliferate in culture or are injected into mice and then

harvested for sequencing (Weinreb, Rodriguez-Fraticelli, Camargo, &

Klein, 2020). Perhaps the computational innovations from these investiga-

tions could also be applied to lineage tracing of heterogeneous populations of

cells induced to express Cas9 that begin barcode editing in the early stages of

lung or kidney development. Lineage tracing by pulse-seq-related methods

is likely a useful tool for delving further into the contributions of cells

expressing known lineage markers to the development of branched organs.
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However, lineage tracing by barcoding in scRNA-seq remains challenging

and highly labor intensive. Before these approaches are more accessible to

the study of branching morphogenesis, certain technological advances in

animal models that encode barcodes and computational approaches for

reconstructing lineage trees are needed.

3. Cellular networks in branching morphogenesis

Building a branched organ and correctly patterning differentiation

within it requires cooperation between many different cell types. As a result,

diverse cellular networks exist between the cells of branched organs, and

these typically encompass multiple tissue types including epithelia and mes-

enchyme. Single-cell transcriptomics of such organs provide us with an

unprecedented level of detail into the composition of these cellular networks

and shed light on how they are established and how they regulate organ pat-

terning.With emphasis on branched epithelia withinmammalian organs, we

highlight important insights into branching morphogenesis that have been

made using scRNA-seq and related techniques, and suggest areas where

such approaches could help to answer outstanding questions specific to

each organ.

3.1 Lung development
In the mouse embryo, the lung is initiated from the foregut endoderm around

E9.5. By E10.5, the lung is a simple wishbone shape comprised of two epi-

thelial tubes, and by E11.5, the four lobes of the right lung are established.

During the pseudoglandular stage of development (E11.5-E15.5), a highly

stereotyped program of branching morphogenesis constructs the tree-like

architecture of the airways (Metzger, Klein, Martin, & Krasnow, 2008;

Zepp &Morrisey, 2019). The airway epithelium branches into the surround-

ing pulmonary mesenchyme, while mesenchymal cells near branch tips

differentiate into airway smooth muscle and wrap circumferentially around

the epithelium (Zepp & Morrisey, 2019) (Fig. 4A). Elaboration of the tree

is driven by bifurcations or domain (lateral) branches, the formation of which

is regulated by molecular and physical stimuli (Metzger et al., 2008; Zepp &

Morrisey, 2019).

Fibroblast growth factor 10 (Fgf10) expressed by the mesenchyme is

required for lung development and signals to the epithelium via fibroblast

growth factor receptor 2 (Fgfr2) to induce the expression of Sonic hedgehog

(Shh). Epithelial Shh in turn signals to the mesenchyme to inhibit the
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Fig. 4 scRNA-seq to study cellular networks and branching morphogenesis of the mammalian lung. (A) During the pseudoglandular stage of
lung development, the branched architecture of the airway epithelium is constructed with help from the surrounding undifferentiated mes-
enchyme, smooth muscle, and mesothelium. The mesenchymal origins of airway smooth muscle could theoretically be identified using
scRNA-seq (i), and pseudotime analyses could be used to reconstruct and examine gene-expression changes along the smooth muscle dif-
ferentiation trajectory (ii). Lastly, as the epithelium branches, its constituent cells take on proximal or distal fates—scRNA-seq could be used to
uncover the characteristics of transitioning cells and shed light on the mechanisms that regulate proximal-distal patterning (iii). (B) The alve-
olus is the functional unit of gas exchange, and its development involves differentiation of AT1 and AT2 cells and recruitment of endothelial
cells. scRNA-seq analyses have revealed novel subpopulations of AT1-associated and interstitial endothelial cells, and shown that epithelial
VEGFA is specifically required only for the former (i). Presumptive AT2 cells protrude into the mesenchyme to protect their apical surfaces
from high pressure (P) due to inhalation of amniotic fluid; this pressure flattens unprotected cells and predisposes them to become AT1 cells
(ii). In a separate mechanism, Mark1-expressing fibroblasts promote local deposition of collagen I to increase AT1 cell flattening (iii).



expression of Fgf10 and to promote differentiation of mesenchymal cells

into airway smooth muscle. Smooth muscle differentiation is also regulated

by epithelial expression of Wingless-related integration site 7b (Wnt7b) and

mesenchymal expression of Wnt2 (Zepp & Morrisey, 2019). Patterned

smooth muscle differentiation is required for bifurcation and domain

branching of the airway epithelium; in cultured explants, inhibiting smooth

muscle differentiation causes epithelial buds to dilate or buckle whereas pro-

moting differentiation causes ectopic smooth muscle wrapping that impedes

branching (Goodwin et al., 2019; Kim et al., 2015).

While some of the molecular requirements for airway smooth muscle

differentiation have been identified, its origin and the signals that initiate

its spatiotemporally patterned differentiation have yet to be elucidated.

Lineage-tracing approaches have shown that Wnt- or Shh-responsive mes-

enchymal cells contribute (but not completely or exclusively) to the smooth

muscle population, and that Ffg10-expressing mesenchymal cells can con-

tribute to a lesser extent (Moiseenko et al., 2017). To search for the origin

of airway smooth muscle without the need for specific lineage markers, mes-

enchymal cell identities in the early stages of lung development could be

explored using scRNA-seq. Clustering of mesenchymal cells would reveal

whether distinct subpopulations exist within the embryonic pulmonary

mesenchyme and if any are more closely related to smooth muscle based

on their gene-expression profiles (Fig. 4Ai). Further, at any given stage of

branching, mesenchymal cells at each step of the smooth muscle differenti-

ation process are presumably present. Therefore, at a single time point, one

could computationally order cells along a differentiation trajectory using

diffusion-based approaches. Tracing backwards along this trajectory would

reveal the origin of smooth muscle cells. By examining gene-expression pat-

terns along the trajectory, one could identify the signaling pathways that are

activated at each stage of differentiation (Fig. 4Aii).

The broad inductive signals required for epithelial branching have been

identified, and several studies have suggested that morphogen gradients gen-

erated in the mesenchyme drive collective migration or chemotaxis of the

epithelium, in the way that the Fgf homolog breathless drives protrusive col-

lective invasion of the thin tubules of the tracheae inDrosophila embryogen-

esis (Metzger & Krasnow, 1999). However, the tissue architecture and

physical mechanisms of branching in Drosophila and in mammalian lungs

are vastly different (Spurlin & Nelson, 2017), and genetic experiments have

demonstrated that the focal sources of a morphogen, specifically Fgf10, are

not required for branching of the lung epithelium (Volckaert et al., 2013).
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scRNA-seq could be used to identify whether specific morphogen-

producing cell types exist in the pulmonary mesenchyme, and provide us

with additional markers of such populations that could be used to isolate

or manipulate morphogen-producing cells.

It is unclear whether current tools in the scRNA-seq field can be used to

study the physical mechanisms of branching morphogenesis. Specifically, we

wonder whether cell transcriptomes can be used to distinguish between the

proposed modes of epithelial branching in the lung: collective migration and

tissue folding.Many of the molecular players broadly implicated in each pro-

cess are similar, such as regulators of the actin cytoskeleton and of cell-matrix

and cell-cell adhesions. To identify the physical processes occurring in air-

way epithelial cells based on their transcriptomes, we would need more spe-

cific classifications of these molecules (e.g., actin regulators that drive cell

migration and those that may be activated in response to tissue folding

and compression) and an understanding of which cellular transcriptomes

could be hallmarks of these different morphogenetic movements. Perhaps

a more fruitful endeavor for scRNA-seq studies of the airway epithelium

could be to uncover how the proximal and distal cell types are patterned.

Epithelial cell identities are specified as branching morphogenesis proceeds;

cells in branch tips remain Sox9-positive while those that end up in branch

stalks become Sox2-positive and eventually give rise to proximal cell types

(Zepp &Morrisey, 2019). By comparing single-cell transcriptomes in Sox2-

and Sox9-expressing cells, and in particular in those cells that seem to be

transitioning from Sox9 to Sox2 expression as they end up in branch stalks,

the signals that establish these cell identities could be uncovered (Fig. 4Aiii).

The pseudoglandular stage of lung development is followed by the

canalicular and saccular stages, during which the terminal ends of branches

are remodeled in preparation for alveologenesis (Zepp & Morrisey, 2019).

Branching morphogenesis continues to some extent into these later stages to

generate the future gas-exchange regions of the lung (Alanis, Chang,

Akiyama, Krasnow, & Chen, 2014). During these stages, there is widespread

differentiation of airway epithelial cells; for proximal cell types, evidence of

differentiation is detectable during the pseudoglandular stage as well

(Zepp & Morrisey, 2019). Proximal cells differentiate into basal, ciliated,

and secretory cells, among others, and distal cells give rise to gas-exchanging

AT1 and surfactant-producing AT2 epithelial cells. Initially, it was thought

that a subset of airway epithelial cells that gave rise to AT2 cells would sub-

sequently differentiate into AT1 cells based on lineage tracing of cells

expressing the distal marker Id2 (Rawlins, Clark, Xue, & Hogan, 2009).
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This was eventually disproven, and mapping the temporal changes in

expression of several markers revealed that AT1 and AT2 cells arise sepa-

rately from a bipotent progenitor that expresses markers of both cell types

(Desai, Brownfield, & Krasnow, 2014).

More recently, these transitions in cell identities have been investigated

using scRNA-seq, and some surprising and conflicting results have been

reported. The first of these studies isolated airway epithelial cells from

E18.5 embryos and identified AT1 cells, AT2 cells, and an intermediate cell

type that the authors recognized could represent the bipotent progenitor

identified experimentally (Treutlein et al., 2014). These data were then used

to computationally reconstruct the changes in gene expression that occur as

cells transition from a bipotent state to either alveolar cell type (Treutlein

et al., 2014). A second study included lineage tracing of specific AT1 and

AT2 markers from early stages in development and scRNA-seq analysis

of airway epithelial cell clusters and transitions (Frank et al., 2019). The

authors found that, as early as E15.5, lineage-labeled cells predominantly

gave rise to clones of either AT1 or AT2 cells, but rarely of both cell types

(Frank et al., 2019), suggesting that bipotent progenitors are rare even several

days before AT1 and AT2 cells actually appear.

Lineage-labeling studies are limited to tracing cells that have expressed a

single gene at some point in time and, traditionally, cell types have been

named or defined by a specific marker gene that they express. However,

scRNA-seq studies have demonstrated that cell identities may be better

described by entire sets of marker genes, and the same study showed that

this is also true for AT1 and AT2 cells and their progenitors. Using

scRNA-seq atE17.5, alveolar cell populations were identified computation-

ally, revealing cell-type specific sets of marker genes, and pseudotime anal-

ysis was used to reconstruct the diverging differentiation trajectories of AT1

and AT2 cells (Frank et al., 2019). However, the expression of these marker

genes was never quite unique to a given cell type or its precursor, and pre-

cursor cell types overlapped significantly in low-dimensional representations

of the data, suggesting that, transcriptionally, these cell types may not be as

distinct as previously believed.

Alveologenesis requires the differentiation of many different cell types,

including myofibroblasts and endothelial cells. Myofibroblasts differentiate

to form a mesh around epithelial tips, depositing elastin and contracting

to drive alveolar septation (Branchfield et al., 2016). Meanwhile, vasculature

develops around alveoli to bring blood vessels into close apposition with gas-

exchanging AT1 cells (Zepp & Morrisey, 2019). The cellular networks that
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govern these fate decisions are being elucidated by combining genetic

knockout models with scRNA-seq. For example, AT1 cells are the main

cell type that expresses vascular endothelial growth factor A (VEGFA) in

the lung, and knocking out VEGFA in AT1 cells specifically or in the entire

airway epithelium leads to loss of a specific subset of endothelial cells and

disrupts alveolar morphogenesis (Vila Ellis et al., 2020). scRNA-seq analysis

of sorted endothelial cells revealed that they are a transcriptionally hetero-

geneous population comprised of two main cell types: one that associates

very closely with AT1 cells and one that is further from AT1 cells in the

interstitial space between alveoli (Fig. 4Bi). Importantly, the authors were

able to show using scRNA-seq that these two populations are affected dif-

ferently by epithelial-specific knockout of VEGFA: the former is completely

lost, while the latter is preserved. Ablating this AT1 cell-associated endothe-

lial population impaired alveolar septation, demonstrating that a local cellu-

lar network can have important consequences for the overall development

of an organ.

Frequently, scRNA-seq studies are performed on cells isolated by

fluorescence-activated cell sorting (FACS) based on the expression of a fluo-

rescently tagged marker or of a fluorescent reporter under the control of a

tissue-specific marker. This approach can enrich a sample for a cell type of

interest, but also eliminates the possibility for studying interactions between

different tissues and cell types. In the example of sacculation in the mouse

lung, interactions between distal airway epithelial cells and their surrounding

mesenchyme have been shown to influence AT1 or AT2 fate decisions

and morphogenesis (Fumoto et al., 2019; Li et al., 2018). Inhalation of

amniotic fluid during fetal breathing movements expands the distal airways

and contributes to sacculation (Fig. 4Bii). At these stages, some of the

undifferentiated airway epithelial cells protrude into the mesenchyme and

accumulate apical myosin, thus fortifying themselves against the influx of

fluid. These cells are thus protected from flattening and differentiate into

AT2 cells (Li et al., 2018). The surrounding mesenchymal cells also influ-

ence AT1 differentiation via different mechanisms: Mark1-expressing fibro-

blasts promote epithelial cell flattening through Hedgehog-dependent

deposition of type I collagen (Fig. 4Biii) (Fumoto et al., 2019).

scRNA-seq analyses that incorporate both epithelial and mesenchymal

cell transcriptomes could shed light on the cellular networks that mediate

these processes. Specifically, scRNA-seq could be used to identify the mes-

enchymal signaling source that induces only a subset of epithelial cells to

migrate outwards, predisposing them to an AT2 fate (Fig. 4Bii), or to elu-

cidate the characteristics of these particular epithelial cells that allow them to
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respond to and migrate towards this mesenchymal signal. Further, using

single-cell transcriptomes, the epithelial-mesenchymal signaling networks

that mediate local deposition of type I collagen and cell flattening could

be elucidated (Fig. 4Biii). Finally, the experimental tools developed to study

the effects of fluid pressure on AT1 and AT2 cell differentiation (Li et al.,

2018) could also be combined with scRNA-seq to understand how

mechanical forces influence the cell transcriptome in vivo.

Studies of lung development using single-cell transcriptomics have

already led to the formation of databases, including LungGENS

(Du et al., 2017; Du, Guo, Whitsett, & Xu, 2015), and the development

of a variety of computational tools that could be applied to other systems

(Guo, Bao, Wagner, Whitsett, & Xu, 2017; Guo, Wang, Potter,

Whitsett, & Xu, 2015). Parallel single-cell analyses of lung development

in vivo and in organoid culture have been used to identify airway cell types

and the signals that control their differentiation and, importantly, to quan-

titatively compare cell identities that arise within organoids to those in vivo

(Miller et al., 2020). Finally, recent work has highlighted the usefulness of

scRNA-seq for the investigation of emerging model organisms. For exam-

ple, Modepalli et al used scRNA-seq to study alveologenesis in a marsupial

model, the grey short-tailed opossumMonodelphis domestica (Modepalli et al.,

2018). scRNA-seq of less-studied animal models that may be costly or time-

consuming to breed and isolate samples from provides us with a rich dataset

that can be compared to the wealth of information about mouse develop-

ment, for example, and that can be used to determine whether similar

signaling pathways and morphogens are involved.

3.2 Kidney development
Kidney branching morphogenesis proceeds from E10.5-11 to E15.5

(Costantini & Kopan, 2010; McMahon, 2016; Short & Smyth, 2016).

Branching is carried out by the ureteric bud epithelium, which evaginates

from the nephric cord (of mesodermal origin) into the surrounding meta-

nephric mesenchyme. As branching proceeds, the metanephric mesen-

chyme surrounding branch tips, called the cap mesenchyme, provides

molecular signals important for ureteric bud growth and branching, includ-

ing glial cell-derived neurotrophic factor (GDNF). Additionally, a subset of

cap mesenchymal cells circles back to the “armpit” regions of bifurcated

buds and differentiates into cells that give rise to nephrons, the functional

units of the kidney (Fig. 5A). Nephron maturation occurs via intermediate

structures called renal vesicles, comma-shaped bodies, and S-shaped bodies.
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Fig. 5 scRNA-seq to study cellular networks and branching morphogenesis of the
mammalian kidney and mammary gland. (A) During kidney branching morphogenesis,
GDNF from the metanephric mesenchyme stimulates growth and bifurcation of the ure-
teric bud (UB) epithelium, and nephron progenitors from the cap mesenchyme initiate
nephrogenesis in the armpits of epithelial bifurcations. scRNA-seq analyses have revealed
new tissue-specific expression patterns of GDNF (i), and suggest that the lineage bound-
aries between mesenchymal compartments may not be as binary as previously thought
(ii). Indeed, imaging and scRNA-seq have shown that Wnt4-lineage-labeled nephron
progenitors can either differentiate or return to the progenitor “ground state” (iii). Cells
without Ret are progressively excluded from branch tips—scRNA-seq analyses could
be used to study epithelial heterogeneity in the UB to uncover mechanisms of kidney
branching morphogenesis (iv). (B) Overview of mammary gland architecture and cell
types in the terminal end bud (TEB). scRNA-seq analyses ofmammary gland development
have revealed a gradual diversification of epithelial cell identities, beginning with more
homogeneous, basal-like, mixed-lineage populations and progressing towards distinct
luminal and basal cell types (i). To gain insights into mammary gland morphogenesis,
which is often studied using organoid models, scRNA-seq studies could be used to
compare cell identities and gene expression within organoids to those in vivo (ii).
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In contrast to the lung, the early stages of kidney development have

already been interrogated using scRNA-seq (Brunskill et al., 2014).

These types of analyses are particularly challenging because, at very early

stages of organogenesis, tissues are in some ways more homogeneous (there

are fewer fully differentiated cells and many uncommitted progenitors)

while in other ways far more heterogeneous (undifferentiated cells tend

to express a larger suite of genes (Gulati et al., 2020)). Indeed, these analyses

revealed that at E11.5 uncommitted metanephric mesenchymal cells express

markers for several differentiated cell types, a phenomenon termed “multi-

lineage priming” (Brunskill et al., 2014). In line with this, induction of cap

mesenchyme identity was found to involve not only activation of cap

mesenchyme-specific genes but also repression of other genes. The primed

transcriptional state of uncommitted progenitors could dictate the dynamics

of their responses to external cues provided by cellular networks in the

developing kidney.

Looking slightly later in kidney development, scRNA-seq analyses of

E14.5 kidneys have been used to map cellular interactions by comparing

ligands and receptors enriched in each cell population (Magella et al.,

2018). This approach revealed expected interactions between Slit2 and

Robo expressed in the ureteric duct epithelium and cap mesenchyme,

respectively, but also uncovered some new interactions and surprising

expression patterns. The analysis carried out byMagella et al predicted inter-

actions between more mature nephron intermediates (comma and S-shaped

bodies) and endothelial cells via R-spondin and Lgr signaling. They also

found that the master regulator of kidney development, GDNF, was

expressed not only in the cap mesenchyme but also in the surrounding

stroma (Fig. 5Ai). GDNF was previously thought to be expressed solely

in the cap mesenchyme (McMahon, 2016) and to act analogously to focal

sources of Fgf10 in the lung (Metzger & Krasnow, 1999). These scRNA-

seq results challenge this model and force us to re-examine the roles of

morphogen-expression patterns in branching morphogenesis.

Similar to lineage-tracing of AT1 and AT2 cells in the mouse lung,

lineage-tracing of the metanephric mesenchyme has long pointed to a binary

model in which Six2-positive cells exclusively give rise to nephron progen-

itors and Foxd1-positive cells exclusively give rise to stromal cells. In the age

of scRNA-seq analyses, we are no longer limited to single lineage markers

and can compare whole transcriptomes for many cells. These analyses reveal

that the boundaries between lineages may not be as binary as previously

thought (Fig. 5Aii). Gene-expression profiles of distinct lineages overlap,

263Uncovering cellular networks in branching morphogenesis



and low-dimensional representations of data suggest overlap between pre-

sumptively distinct progenitors in the metanephric mesenchyme

(Brunskill et al., 2014; Magella et al., 2018) and in the airway epithelium

(Frank et al., 2019). The degree and functional significance of these overlaps

have yet to be clearly defined, and their interpretation thus far seems to be at

the discretion of the investigators—in some cases the overlap is emphasized

(Magella et al., 2018) and in others it is ignored (Frank et al., 2019).

Further support for the plasticity of cell differentiation in the developing

kidney comes from combined lineage-tracing and scRNA-seq analysis (anal-

ogous to the pulse-seq experiments discussed in Section 2.3) of the E15.5 kid-

ney (Lawlor et al., 2019). Motivated by the observation that lineage-traced

Wnt4-expressing nephron progenitors (thought to be fully committed to

the nephron fate) could re-enter the cap mesenchyme during time-lapse

imaging of kidney development, Lawlor et al. carried out scRNA-seq and

mapped lineage label expression onto the computationally identified cell clus-

ters. They detected lineage-labeled cells throughout mesenchymal clusters,

including in those corresponding to progenitors. Wnt4-lineage-traced cells

in these clusters had transcriptomes indistinguishable from other progenitors,

which the authors interpreted as a “return to ground” state (Fig. 5Aiii).

The majority of scRNA-seq analyses of embryonic kidney development

seem to have focused on differentiation of the metanephric mesenchyme.

We believe such analyses could also be used to study branching morphogen-

esis of the ureteric bud epithelium.While manymolecular players have been

identified, the physical mechanisms of branching in the kidney are still

unknown (Costantini & Kopan, 2010; Goodwin & Nelson, 2020;

Short & Smyth, 2016). However, mosaic genetic approaches have uncov-

ered heterogeneity among epithelial cells of the ureteric bud that dictates

whether these cells remain in branch tips or become excluded to stalks

(Riccio, Cebrian, Zong, Hippenmeyer, & Costantini, 2016). Cells lacking

Ret, the GDNF receptor, are less competitive than their wildtype counter-

parts and are progressively excluded from branch tips as branching morpho-

genesis proceeds. Whether there is a role for endogenous heterogeneity in

GDNF-responsiveness among epithelial cells during kidney branching is still

unknown, but one could begin to investigate this by comparing the expres-

sion of Ret or other receptors in scRNA-seq data. Perhaps by defining an

endogenous population of Ret-low cells, one could examine the rest of the

cells’ transcriptomes to uncover clues as to how and why these cells behave

differently and whether these behaviors might have consequences for overall

tissue morphogenesis (Fig. 5Aiv).
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Finally, scRNA-seq analyses are especially useful for the study of human

development because samples are more difficult to procure and as much

information as possible should be extracted from each one. Single-cell

approaches are being used to identify the signaling pathways that have been

extensively studied in animal models and that may also play a role in human

kidney development, and to compare the various cell populations that make

up the human embryonic kidney to those present in the mouse (Menon

et al., 2018; Wang et al., 2018).

3.3 Mammary gland development
Morphogenesis of the mammary gland occurs in multiple phases and spans

many different stages of the life of a mammal (Gjorevski & Nelson, 2011;

Howard & Lu, 2014; Huebner & Ewald, 2014). At E12 in mouse embryos,

the mammary epidermal placode invaginates into primary mammary

mesenchyme. By E15-E16, this initial mass of epithelial cells forms a rudi-

mentary branched network that extends into the secondary mammary fat

pad mesenchyme. After birth, this network hollows out to form ducts

and continues to undergo a limited amount of branching until puberty

(Howard & Lu, 2014). During puberty, branching morphogenesis of the

mammary epithelium constructs an extensive tree-like structure that perme-

ates the entire adipose-rich stroma of the fat pad. Branch extension in the

mouse mammary gland occurs as terminal end buds (TEBs), multi-layered,

loosely-connected agglomerations of cells, propel themselves forward

into the stroma, leaving behind ducts that resolve into bi-layered tubes

(Fig. 5B). The final phase of mammary gland development occurs cyclically

during pregnancy and lactation, when branch tips form lobulo-alveolar units

in the mouse (terminal ductal lobular units in the human) and their constit-

uent epithelial cells differentiate to produce milk.

scRNA-seq analyses have been carried out at various stages of mammary

gland development. For example, some studies have focused on how mam-

mary epithelial cell identities and gene expression evolve over the lifetime of

a mouse from prepuberty to pregnancy (Pal et al., 2017) or from embryonic

stages to adulthood (Giraddi et al., 2018). These analyses revealed that the

embryonic and pre-pubertal epithelium are comprised of fairly homoge-

neous cell populations that are characterized by the expression of basal cell

markers. Over the course of development, the epithelium diversifies into

basal and luminal cell populations (Fig. 5Bi). Similar to the metanephric

mesenchyme (Brunskill et al., 2014), a subset of epithelial cells isolated in
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these scRNA-seq analyses have mixed expression of lineage markers

(Giraddi et al., 2018; Pal et al., 2017). Additionally, epithelial cells at

E18 have accessible chromatin near genes of both basal and luminal lineages

(Giraddi et al., 2018). Overall, these scRNA-seq studies suggest that the epi-

thelium of the mammary gland initially contains a continuum of cells with-

out clear lineage markers, and provide further evidence that lineage

boundaries may be blurrier than classically believed.

In many contexts, scRNA-seq has been used to identify distinct progen-

itor or stem cells (Kumar, Tan, & Cahan, 2017). This is not always possible

in tissues undergoing morphogenesis, where a spectrum of cells is present

instead of a distinct progenitor. To search for mammary stem cells,

scRNA-seq analyses were carried out with ductal and TEB cells of pubertal

mammary glands (Scheele et al., 2017). However, computationally cluster-

ing epithelial cells revealed no distinct subpopulation of mammary stem

cells. Instead, the cells analyzed had highly heterogeneous gene-expression

profiles and only loosely clustered into their respective lineages. The authors

therefore suggested that most of the cells within TEBs are mammary stem

cells. In line with this, other scRNA-seq studies have referred to the hetero-

geneous population present at early developmental stages (E18) as functional

mammary stem cells (Giraddi et al., 2018). These findings shed light on the

nature of developing tissues, which appear to be initially comprised almost

entirely of “stem cells,” evidenced by overlapping cell clusters and mixed-

lineage gene-expression profiles and chromatin-accessibility landscapes.

As development progresses, these cells give rise to various differentiated

populations, leading to diversification of cell types and emergence of more

specific gene-expression profiles.

Lineage-tracing studies had shown that by postnatal day 1, mammary

epithelial cells are unipotent, suggesting that they were already lineage-

committed by the end of embryogenesis (Wuidart et al., 2018). It has been

argued that the lack of distinct luminal and basal progenitors in scRNA-seq

datasets of early mammary gland development could be due to limitations

of the scRNA-seq method itself. Transcripts of genes expressed at low levels

are oftenmissed entirely, and a cell’s identity or state is not necessarily encoded

only in its transcriptome. Additional information is encoded in the chromatin

landscape, which can be investigated using assay for transposase-accessible

chromatin (ATAC)-seq. Recent technological advances have enabled

researchers to carry out single-nucleus (sn) ATAC-seq (Preissl et al., 2018).

In snATAC-seq, the chromatin landscape can be mapped for individual cells

and thus an alternative (or additional, if scRNA-seq and snATAC-seq are
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carried out on the same cells (Chen, Lake, & Zhang, 2019)) readout of cell

identity can be observed. snATAC-seq of embryonic mammary glands rev-

ealed that epithelial cells could be classifiedmore distinctly into basal and lumi-

nal clusters based on their open chromatin at distal sites, as compared to

classification based on their mRNA content or by their open chromatin at

proximal sites (Chung et al., 2019; Giraddi et al., 2018). This heterogeneity

in accessible chromatin sites may explain why analyses of bulk ATAC-seq data

suggested that epithelial cells have both luminal and basal chromatin

landscapes in the early stages of mammary gland development.

After branching morphogenesis, the adult mammary gland continues to

elaborate and specialize during pregnancy and lactation (Inman, Robertson,

Mott, & Bissell, 2015). Following lactation, the mammary gland is

remodeled, and many epithelial cells undergo apoptosis in a process called

involution. Each of these stages has been characterized by scRNA-seq anal-

ysis (Bach et al., 2017). Similar to prepubertal and pubertal stages, the cycling

adult mammary gland contains a continuum of progenitor and differentiated

epithelial cell types within the basal and luminal compartments. Focusing

first on pre-pregnancy, Bach et al. used diffusion maps to reconstruct differ-

entiation trajectories: in the resultant map, luminal progenitor cells clustered

together at the root, and two branches led to the secretory alveolar lineage

and the hormone-sensing lineage. To determine if cell identities revert to

their pre-pregnancy state after involution, the authors mapped luminal

progenitor cells from the post-pregnancy dataset onto this diffusion map.

Post-pregnancy luminal progenitors were spread throughout the secretory

alveolar branch, suggesting that luminal progenitor cells remain primed to

differentiate. Luminal cells of the post-pregnancy mammary gland have a

distinct DNA-methylation signature, particularly at genes expressed during

pregnancy (Dos Santos, Dolzhenko, Hodges, Smith, & Hannon, 2015).

Overall, these data suggest that post-pregnancy luminal progenitor cells have

a unique epigenome and transcriptome that may enhance their response to a

second pregnancy and drive robust alveologenesis (Bach et al., 2017; Dos

Santos et al., 2015). Using snATAC-seq or related techniques in combina-

tion with scRNA-seq, future work could uncover exactly which cells retain

an epigenetic memory of pregnancy and whether gene-expression profiles

of luminal progenitors reflect epigenetic modifications.

scRNA-seq investigations into development and morphogenesis also

have exciting implications for understanding disease mechanisms, as devel-

opmental pathways are often coopted in cancer (Aiello & Stanger, 2016).

Indeed, comparing developmental trajectories obtained from samples

267Uncovering cellular networks in branching morphogenesis



isolated during mammary epithelial branching morphogenesis to those

detected in tumor samples revealed that mammary epithelial carcinoma cells

reactivate some of the gene expression programs of mammary epithelial stem

cells (Giraddi et al., 2018). Specifically, metabolic signaling pathways favor-

ing glycolysis and disfavoring mitochondrial metabolism and oxidative

phosphorylation were highly enriched in both mammary stem cells

(E18 epithelial cells) and basal-like tumors, but not in luminal-like tumors.

Future work could compare single-cell data from tumors to developing

mammary glands to determine whether tumor cell heterogeneity recapitu-

lates developmental heterogeneity.

Our current physical models of mammary branching morphogenesis are

primarily informed by observations of organoids. Dissociated mammary epi-

thelial cells embedded in Matrigel and treated with growth factors assemble

into organoids and undergo robust branching morphogenesis (Huebner &

Ewald, 2014). This experimental model is amenable to live-imaging, unlike

the optically unfavorable, adipocyte-rich fat pad. In mammary epithelial

organoids, branch extension occurs by collective, noninvasive migration

of TEB-like structures (Ewald, Brenot, Duong, Chan, & Werb, 2008),

and myoepithelial cells provide hoop stresses around ducts to allow for

TEB propulsion (Neumann et al., 2018).Whether similar mechanisms drive

branching in vivo or in human mammary glands, which are surrounded by a

very different, fibroblast-rich stroma, is unknown (Goodwin & Nelson,

2020). Comparative scRNA-seq analyses of mammary glands in vivo and

in organoids, similar to that carried out in studies of human embryonic lung

organoids and tissue samples (Miller et al., 2020), could help determine how

closely organoids recapitulate morphogenesis in vivo, and point the way

towards identifying key components of the native microenvironment that

regulate mammary epithelial cell gene expression (Fig. 5Bii).

Most scRNA-seq studies of the mammary gland have been carried out in

sorted cell populations to enrich for epithelial cells based on specific cell-

surface markers. Since scRNA-seq data can be readily sorted computation-

ally, physically sorting may not always be necessary. Presorting could bias the

cells analyzed, and excludes supporting cell types, some of which may have

surprising roles. For example, recent work identified a population of mac-

rophages nestled between the luminal and myoepithelial cells of the ducts

that support mammary gland homeostasis and remodeling (Dawson et al.,

2020). In scRNA-seq studies of perturbations to the mammary gland,

sequencing all cells would uncover effects on the network of epithelial cells

and macrophages instead of obfuscating potentially important effects on

other cell types by sequencing only sorted epithelial cells.
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3.4 Development of other branched organs
Finally, it is important to describe a few scRNA-seq studies of branching

morphogenesis in organs not discussed above, including the salivary gland,

pancreas, and prostate. The literature on these organs is currently less

extensive, but scRNA-seq analyses have already produced insights into

the development of and cell-type heterogeneity within these tissues.

scRNA-seq analyses have been carried out in the embryonic and post-

natal salivary gland (Sekiguchi et al., 2019; Song et al., 2018). These studies

have shown that at E12 the salivary gland mesenchyme is more heteroge-

neous than the epithelium, and that gland-specific mesenchymal clusters

from the salivary and parotid glands emerge during clustering analyses

(Sekiguchi et al., 2019). Postnatally, there is increased epithelial diversity

and acinar, myoepithelial, and basal lineages can be clearly demarcated

(Song et al., 2018). Multi-stage data or data from later stages in the devel-

oping organ could be used to computationally reconstruct differentiation

trajectories into each of these lineages. The physical mechanisms of salivary

gland branching morphogenesis have been extensively investigated and are

better understood than the mechanisms of branching in other commonly-

studied organs (Goodwin & Nelson, 2020). Given the recent publication

of embryonic salivary gland scRNA-seq data (Sekiguchi et al., 2019), there

is an exciting opportunity to compare our current physical models of

branching morphogenesis with cell transcriptomes. For example, outer cells

of the buds of developing salivary glands are more motile than inner cells and

protrude through their basement membrane to contact the surrounding

mesenchyme (Daley et al., 2017; Harunaga, Doyle, & Yamada, 2014). If

these cells could be identified within scRNA-seq data, we could learn more

about the genes that regulate these behaviors and, conversely, we could

begin to define features of a cell transcriptome indicative of specific cellular

activities important for morphogenesis.

Development of the pancreas between E9.5 and E17.5 was studied using

scRNA-seq analyses of cells isolated and sorted from embryos expressing var-

ious reporters of pancreatic progenitors and differentiated cell types (Yu et al.,

2019). This experimental design comes with rich metadata (developmental

stage, lineage label) that can be overlaid on computationally-identified clusters

and reconstructed differentiation trajectories to verify their biological rele-

vance. Focusing on specific lineage-restriction decisions, the authors used

Monocle2 analyses to study differentiation within tips, ducts, endocrine pro-

genitors, and α- and β-cell lineages separately. By isolating each lineage deci-

sion, they were able to move step-wise throughout pancreatic development
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and identify key signaling pathways at each stage in the morphogenesis of this

complex organ. Ductal cell differentiation in the human pancreas has also been

investigated using scRNA-seq (Qadir et al., 2020). Similar to developing

embryonic tissues, ductal cells within the adult pancreas exist in a continuum

of states from progenitor to fully differentiated.

To our knowledge, no scRNA-seq studies of embryonic prostate devel-

opment have been carried out, although some have examined postnatal

(Boufaied et al., 2017) and adult (Kwon et al., 2019) stages. When such

datasets are eventually generated, it will be valuable to compare cell types

and transitions in the developing prostate mesenchyme to those in the pul-

monary mesenchyme. Prostate branching morphogenesis may be influenced

by smooth muscle differentiation from the surrounding mesenchyme

(Toivanen & Shen, 2017) in a manner similar to airway branching

(Goodwin &Nelson, 2020). Comparative scRNA-seq analyses could deter-

mine whether similar pathways regulate mesenchymal patterning and

smooth muscle cell recruitment in each organ.

4. Using scRNA-seq to determine how physical signals
dictate cell identity

Thus far, scRNA-seq has revealed that branching tissues are com-

prised of many different cell types, and that they typically begin as more

homogeneous populations from which distinct progenitors cannot always

be discerned. As branching morphogenesis and differentiation proceed,

scRNA-seq has allowed us to observe lineage choices and differentiation

trajectories. However, branching morphogenesis is more than just differen-

tiation into cell types; to build a branched organ, tissues also need to expand,

elongate, fold, push, and squeeze to generate the final architecture necessary

for organ function. In this final section, we speculate about whether we can

use a cell’s transcriptome to understand the physical aspects of branching

morphogenesis, and whether scRNA-seq analyses could shed light on the

physical signals that cells receive during morphogenesis.

One approach to address this question would be to begin with a simpler

morphogenetic event, in which the forces and cell-shape changes are well-

defined, and compare our understanding of the physical aspects of the system

with single-cell transcriptomes. Recently, scRNA-seq analyses were carried

out on the Drosophila wing imaginal disc, a model system that has been

extensively used to study the coupling between growth, patterning, and tis-

sue mechanics (Deng et al., 2019). First, the authors identified sets of
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coregulated genes that were related to proliferation and growth; one set con-

tained genes related toDNA replication, and the other contained genes related

to protein translation. Then, the authors clustered cells based on their expres-

sion of these gene sets into four classes. In wild-type wing discs, cells of each

class were found in each anatomically distinct region, as expected, but in

mutants for the tumor suppressor scribble, the majority of cells were members

of classes with enhanced expression of either protein translation genes or both

DNA replication and protein translation genes. This analysis showed that the

growth state of a cell could be effectively inferred from its transcriptome.

Themechanical state of a cell is the sum of many different factors, and can

be characterized in part based on the expression of proteins within specific

networks including the adhesome, contractome, or mechanobiome

(Horton et al., 2016; Kothari, Johnson, Sandone, Iglesias, & Robinson,

2019; Zaidel-Bar, Zhenhuan, & Luxenburg, 2015). Mechanotransduction

causes many immediate changes in protein conformation, binding, recruit-

ment, etc., and, over longer time scales, in gene expression. Transcription

factors that respond to mechanical signals regulate diverse aspects of cell

behavior including proliferation, differentiation, metabolism, cytoskeletal

contraction, cell-cell and cell-matrix binding, and chromatin remodeling.

These responses can occur directly downstream of changes in gene expres-

sion, but some are independent of transcription and are instead regulated at

the protein level. Therefore, scRNA-seq may not provide a sufficient read-

out of cell mechanical state. Other single-cell, big data-style techniques

would need to be used to probe other aspects of the mechanobiome, such

as single-cell proteomics (Zhu et al., 2019).

Bulk RNA-seq has been used to investigate cellular responses to micro-

environmental stiffness in culture models (Moreno-Vicente et al., 2018); in

such systems, cell heterogeneity is arguably much lower, so bulk RNA-seq is

likely to capture important changes in gene expression in response to stiff-

ness. In studies of more complex organ systems, however, this may not be

sufficient. Bulk RNA-seq of lungs under high and low transmural pressure

revealed that pressure enhances branching morphogenesis and causes

differential expression of many different genes (Nelson et al., 2017).

Single-cell-level information in this system would shed light on how each

cell population responds to transmural pressure, and could elucidate whether

each tissue responds directly to physical pressure or indirectly via pressure-

dependent signaling in a neighboring tissue (Fig. 6A).

scRNA-seq analyses have not been extensively used to study tissue

mechanics, but some recent exciting studies have either begun to or have
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already generated datasets that could be used to explore this area. For exam-

ple, Abbas et al. carried out a comparative study of the decidua, placenta, and

endometrium, all tissues at the maternal-fetal interface. For each tissue, they

measured stiffness using atomic force microscopy and profiled gene expres-

sion using scRNA-seq (Abbas et al., 2019). This dataset was used to deter-

mine which extracellular matrix (ECM) components were expressed by

each tissue type and could be used to relate cell transcriptomes to tissue stiff-

ness. scRNA-seq datasets of lung epithelial cells in healthy and fibrotic tissue

(Xu et al., 2016) or in lung tissue after pneumonectomy (Wu et al., 2020)

could be used to study the response of lung epithelial cells to an altered

Fig. 6 Using scRNA-seq to study physical and mechanical aspects of morphogenesis.
(A) Transmural pressure stimulates embryonic mouse lung development and leads to
many changes in gene expression as determined by bulk RNA seq. With scRNA-seq,
cell-type-specific effects of pressure could be measured, and the bulk effects could
be disentangled to determine which tissues respond directly to pressure and how.
(B) Serial sections of a folding tissue could be used for immunofluorescence analysis
(for example, to visualize F-actin or pMLC and infer regions of active constriction)
and for slide-seq to define a gene-expression profile unique to constricting cells
compared to passively folding cells of the same cell type. (C) Biophysical techniques
for measuring local tissue stiffness, for example embedding magnetic beads in the
mesenchyme around a bifurcating airway, could be used in parallel with spatial
transcriptomics to generate and compare stiffness maps with gene-expression maps.
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mechanical microenvironment. Indeed, the latter study identified a role for

mechanical tension in regulating harmful signaling in AT2 cells during pul-

monary fibrosis (Wu et al., 2020).

Finally, we propose that spatial scRNA-seq approaches such as those dis-

cussed in Section 2.3 could be used in combination with readouts of local

tissue shape and mechanics to directly compare single-cell transcriptomics

to tissue mechanics. For example, simple staining for F-actin or phosphor-

ylated myosin light chain (pMLC) in serial sections combined with slide-seq

would reveal local transcriptional signatures associated with cytoskeletal ten-

sion (Fig. 6B). More direct measures of cellular mechanics such as F€orster
resonance energy transfer (FRET)-based tension sensors (Tao et al.,

2019), magnetic bead displacements (Zhu et al., 2020), and oil-drop defor-

mation (Mongera et al., 2018) are now being applied to increasingly

complex morphogenetic processes. Conceivably, one could map tissue

mechanics with these approaches followed by spatial transcriptomics to

understand how endogenous forces regulate cell identity (Fig. 6C).

5. Conclusions and outlook

Single-cell transcriptomics serve as a powerful approach tomap the cell-

intrinsic characteristics and changes that define cell types and differentiation

trajectories. However, it is still challenging to uncover the external factors

and cellular networks that influence the cell transcriptome. Preserving spatial

information and inclusive sequencing (as opposed to sequencing only sorted

cells) will be instrumental in identifying these networks, as will new tech-

niques to preserve connections between cells, such as PIC-seq, an approach

for sequencing pairs of physically interacting cells (Giladi et al., 2020).

Transcriptomic characterizations of progenitor cells within developing

or adult organs, including several examples discussed here, have consistently

revealed that lineage boundaries are blurrier than previously thought, and

that distinct progenitors cannot always be discerned. While this may reflect

the underlying biology, it might also be a result of insufficient resolution.

Indeed, one of the studies discussed here showed that snATAC-seq

could resolve lineages where scRNA-seq could not (Chung et al., 2019).

Incorporating lineage-tracing and barcoding technologies into single-cell

transcriptomics experiments is a promising avenue for testing the boundaries

between lineages (Wagner & Klein, 2020). Additionally, improvements are

being made to scRNA-seq itself to enhance sensitivity, detect more tran-

scripts, and distinguish between isoforms (Hagemann-Jensen et al., 2020).
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With these newer technologies, we will either resolve progenitors or

confirm that progenitor identity is not always so distinct.

scRNA-seq analyses have already shed light on differentiation within lin-

eages of branched organs, but they have not yet been used to understand the

physical aspects of branching morphogenesis. We hope that, as single-cell

technologies and applications continue to develop, we will learn more about

how mechanical and physical signals influence the cell transcriptome, and

eventually devise methods of extracting physical or mechanical information

from single-cell transcriptomics.
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